Background Human adenoviruses (HAdVs) are commonly associated with acute respiratory illness. HAdV outbreaks are well documented in congregate military training settings, but less is known about outbreaks on college campuses. During fall 2018 and spring 2019, 5 United States (US) colleges reported increases in HAdV-associated respiratory illness. Investigations were performed to better understand HAdV epidemiology in this setting. Methods A case was defined as a student at one of the 5 colleges, with acute respiratory illness and laboratory-confirmed HAdV infection during October 2018–December 2018 or March–May 2019. Available respiratory specimens were typed by HAdV type-specific real-time polymerase chain reaction assays, and for a subset, whole genome sequencing was performed. We reviewed available medical records and cases were invited to complete a questionnaire, which included questions on symptom presentation, social history, and absenteeism. Results We identified 168 HAdV cases. Median age was 19 (range, 17–22) years and 102 cases (61%) were male. Eleven cases were hospitalized, 10 with pneumonia; 2 cases died. Among questionnaire respondents, 80% (75/94) missed ≥ 1 day of class because of their illness. Among those with a type identified (79%), HAdV types 4 and 7 were equally detected, with frequency of each varying by site. Genome types 4a1 and 7d were identified, respectively, by whole genome sequence analysis. Conclusions HAdV respiratory illness was associated with substantial morbidity and missed class time among young, generally healthy adults on 5 US college campuses. HAdVs should be considered a cause of respiratory illness outbreaks in congregate settings such as college campuses.
We present the first science results from the Keck Interferometer, a direct-detection infrared interferometer utilizing the two 10 m Keck telescopes. The instrument and system components are briefly described. We then present observations of the T Tauri object DG Tau, which is resolved by the interferometer. The resolved component has a radius of 0.12-0.24 AU, depending on the assumed stellar and extended component fluxes and the model geometry used. Possible origins and implications of the resolved emission are discussed.
Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including SARS, EVD and COVID-19. Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance. We have performed a clinical study of 596 subjects to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic curves and area under the curve (AUC) values for detection of febrile subjects. Pearson correlation coefficients for IRT- based and reference temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95-0.97 vs. 0.86-0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results from in prior human studies of IRT- based fever screening. Thus, our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.
Background In 2009, a university adopted a policy of emergency department transport of students appearing intoxicated on campus. The objective was to describe the change in ED referrals after policy initiation and describe a group of students at risk for acute alcohol-related morbidity.MethodsA retrospective cohort of university students during academic years 2007–2011 (September–June) transported to local ED’s was evaluated. Data were compared 2 years prior to initiation of the policy and 3 years after and included total number of ED transports and blood or breath alcohol level.Results971 Students were transported to local ED’s. The mean number of yearly transports 2 years prior to policy initiation was 131 and 3 years after was 236 (56 % increase, p < 0.01). 92 % had a blood or breath alcohol level obtained. The mean alcohol level was 193 mg/dL. Twenty percent of students had alcohol levels greater than 250 mg/dL.ConclusionsAdoption of a university alcohol policy was followed by a significant increase in ED transports of intoxicated students. College students identified as intoxicated frequently drank to toxicity.
The Keck Interferometer (KI) combined the two 10 m W. M. Keck Observatory telescopes on Mauna Kea, Hawaii, as a long-baseline near-and mid-infrared interferometer. Funded by NASA, it operated from 2001 until 2012. KI used adaptive optics on the two Keck telescopes to correct the individual wavefronts, as well as active fringe tracking in all modes for path-length control, including the implementation of cophasing to provide long coherent integration times. KI implemented high sensitivity fringe-visibility measurements at H (1:6 μm), K (2:2 μm), and L (3:8 μm) bands, and nulling measurements at N band (10 μm), which were used to address a broad range of science topics. Supporting these capabilities was an extensive interferometer infrastructure and unique instrumentation, including some additional functionality added as part of the NSF-funded ASTRA program. This paper provides an overview of the instrument architecture and some of the key design and implementation decisions, as well as a description of all of the key elements and their configuration at the end of the project. The objective is to provide a view of KI as an integrated system, and to provide adequate technical detail to assess the implementation. Included is a discussion of the operational aspects of the system, as well as of the achieved system performance. Finally, details on V 2 calibration in the presence of detector nonlinearities as applied in the data pipeline are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.