Numerous Gram negative pathogens possess a type III secretion system (T3SS) which allows them to inject virulent proteins directly into the eukaryotic cell cytoplasm. Injection of these proteins is dependent on a variable secretion signal sequence. In this study, we utilized the N-terminal secretion signal sequence of Pseudomonas aeruginosa exotoxin ExoS to translocate Cre recombinase containing a nuclear localization sequence (Cre-NLS). Transient exposure of human sarcoma cell line, containing Cre-dependent lacZ reporter, resulted in efficient recombination in the host chromosome, indicating that the bacterially delivered protein was not only efficiently localized to the nucleus but also retained its biological function. Using this system, we also illustrate the ability of P. aeruginosa to infect mouse embryonic stem cells (mESC) and the susceptibility of these cells to bacterially delivered Cre-NLS. A single two-hour infection caused as high as 30% of the mESC reporter cells to undergo loxP mediated chromosomal DNA recombination. A simple antibiotic treatment completely eliminated the bacterial cells following the delivery, while the use of an engineered mutant strain greatly reduced cytotoxicity. Utility of the system was demonstrated by delivery of the Cre-NLS to induced pluripotent stem cells to excise the floxed oncogenic nuclear reprogramming cassette. These results validate the use of T3SS for the delivery of transcription factors for the purpose of cellular reprogramming.
SHP1 is a tyrosine phosphatase critical to proximal regulation of TCR signaling. Here, analysis of CD4-Cre SHP1fl/fl conditional knockout thymocytes using CD53, TCRβ, CD69, CD4 and CD8α expression demonstrates the importance of SHP1 in the survival of post selection (CD53+), single-positive thymocytes. Using Ca2+ flux to assess the intensity of TCR signaling demonstrated that SHP1 dampens the signal strength of these same mature, post-selection thymocytes. Consistent with its dampening effect, TCR signal strength was also probed functionally using peptides that can mediate selection of the OT-I TCR, to reveal increased negative selection mediated by lower-affinity ligand in the absence of SHP1. Our data show that SHP1 is required for the survival of mature thymocytes and the generation of the functional T-cell repertoire, as its absence leads to a reduction in the numbers of CD4+ and CD8+ naïve T cells in the peripheral lymphoid compartments.
Forced exogenous gene expression has been well characterized as an effective method for directing both cellular differentiation and dedifferentiation. However, transgene expression is not amenable for therapeutic application due to potential insertional mutagenesis. Protein-based techniques provide a safe alternative, but current protein delivery methods are quite limited by labor-intensive purification processes, low protein yield, and inefficient intracellular targeting. Such limitations may be overcome by using a naturally occurring bacterial protein injection system, called the type III secretion system (T3SS), which injects bacterial proteins directly into the eukaryotic cell cytoplasm. Using a genetically attenuated strain of Pseudomonas aeruginosa, we have previously described the ability of this system to easily deliver a high quantity of protein to both differentiated and pluripotent cells. MyoD is a key muscle regulatory factor, the overexpression of which is able to induce transdifferentiation of numerous cell types into functional myocytes. Here we demonstrate transient injection of MyoD protein by P. aeruginosa to be sufficient to induce myogenic conversion of mouse embryonic fibroblasts. In addition to clear morphological changes, muscle-specific gene expression has been observed both at mRNA and protein levels. These studies serve as a foundation for the bacterial delivery of transcription factors to efficiently modulate concentration-dependent and temporal activation of gene expression that directs cell fate without jeopardizing genomic integrity.
Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen possessing a type III secretion system (T3SS) which injects toxic effector proteins into mammalian host cells. In previous studies, P. aeruginosa strains lacking all of the known type III effectors were shown to cause cytotoxicity upon prolonged infection time. In this study, we report the identification of a new cytotoxin, nucleoside diphosphate kinase (NDK), which is injected into eukaryotic cells in a T3SS-dependent manner. Injection of NDK is inhibited by the presence of previously known effectors of the T3SS, with an effectorless strain injecting the highest amount, suggesting active competition with the known T3SS effectors. NDK is shown to cause a cytotoxic response when expressed in eukaryotic cells, and P. aeruginosa strains harbouring NDK also show a greater toxicity than strains lacking it. Interestingly, the cytotoxic effect of intracellular NDK is independent of its kinase activity. In previous studies, NDK was shown to be secreted into culture supernatants via a type I secretion system and cause cytotoxicity in a kinase-dependent manner. Therefore, the current study highlights an alternative route of NDK secretion as well as two different cytotoxic mechanisms of NDK, depending on the extra-or intra-cellular location of the protein.
During prolonged exposure to Ags, such as chronic viral infections, sustained TCR signaling can result in T cell exhaustion mediated in part by expression of programmed cell death-1 (PD-1) encoded by the Pdcd1 gene. In this study, dynamic changes in histone H3K4 modifications at the Pdcd1 locus during ex vivo and in vivo activation of CD8 T cells suggested a potential role for the histone H3 lysine 4 demethylase LSD1 in regulating PD-1 expression. CD8 T cells lacking LSD1 expressed higher levels of Pdcd1 mRNA following ex vivo stimulation as well as increased surface levels of PD-1 during acute, but not chronic, infection with lymphocytic choriomeningitis virus (LCMV). Blimp-1, a known repressor of PD-1, recruited LSD1 to the Pdcd1 gene during acute, but not chronic, LCMV infection. Loss of DNA methylation at Pdcd1's promoter-proximal regulatory regions is highly correlated with its expression. However, following acute LCMV infection, in which PD-1 expression levels return to near baseline, LSD1deficient CD8 T cells failed to remethylate the Pdcd1 locus to the levels of wild-type cells. Finally, in a murine melanoma model, the frequency of PD-1-expressing tumor-infiltrating LSD1-deficient CD8 T cells was greater than in wild type. Thus, LSD1 is recruited to the Pdcd1 locus by Blimp-1, downregulates PD-1 expression by facilitating the removal of activating histone marks, and is important for remethylation of the locus. Together, these data provide insight into the complex regulatory mechanisms governing T cell immunity and regulation of a critical T cell checkpoint gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.