To assess original research addressing the effect of the application of compression clothing on sport performance and recovery after exercise, a computer-based literature research was performed in July 2011 using the electronic databases PubMed, MEDLINE, SPORTDiscus, and Web of Science. Studies examining the effect of compression clothing on endurance, strength and power, motor control, and physiological, psychological, and biomechanical parameters during or after exercise were included, and means and measures of variability of the outcome measures were recorded to estimate the effect size (Hedges g) and associated 95% confidence intervals for comparisons of experimental (compression) and control trials (noncompression). The characteristics of the compression clothing, participants, and study design were also extracted. The original research from peer-reviewed journals was examined using the Physiotherapy Evidence Database (PEDro) Scale. Results indicated small effect sizes for the application of compression clothing during exercise for shortduration sprints (10–60 m), vertical-jump height, extending time to exhaustion (such as running at VO2max or during incremental tests), and time-trial performance (3–60 min). When compression clothing was applied for recovery purposes after exercise, small to moderate effect sizes were observed in recovery of maximal strength and power, especially vertical-jump exercise; reductions in muscle swelling and perceived muscle pain; blood lactate removal; and increases in body temperature. These results suggest that the application of compression clothing may assist athletic performance and recovery in given situations with consideration of the effects magnitude and practical relevance.
Our findings reveal greater improvement in the performance of repeated double-poling sprints, together with larger variations in the perfusion of upper body muscles in RSH compared with those in RSN.
The purpose of this experiment was to investigate skeletal muscle blood flow and glucose uptake in m. biceps (BF) and m. quadriceps femoris (QF) 1) during recovery from high intensity cycle exercise, and 2) while wearing a compression short applying ∼37 mmHg to the thigh muscles. Blood flow and glucose uptake were measured in the compressed and non-compressed leg of 6 healthy men by using positron emission tomography. At baseline blood flow in QF (P = 0.79) and BF (P = 0.90) did not differ between the compressed and the non-compressed leg. During recovery muscle blood flow was higher compared to baseline in both compressed (P<0.01) and non-compressed QF (P<0.001) but not in compressed (P = 0.41) and non-compressed BF (P = 0.05; effect size = 2.74). During recovery blood flow was lower in compressed QF (P<0.01) but not in BF (P = 0.26) compared to the non-compressed muscles. During baseline and recovery no differences in blood flow were detected between the superficial and deep parts of QF in both, compressed (baseline P = 0.79; recovery P = 0.68) and non-compressed leg (baseline P = 0.64; recovery P = 0.06). During recovery glucose uptake was higher in QF compared to BF in both conditions (P<0.01) with no difference between the compressed and non-compressed thigh. Glucose uptake was higher in the deep compared to the superficial parts of QF (compression leg P = 0.02). These results demonstrate that wearing compression shorts with ∼37 mmHg of external pressure reduces blood flow both in the deep and superficial regions of muscle tissue during recovery from high intensity exercise but does not affect glucose uptake in BF and QF.
The aims of the present study were to characterize the effects of cycling in varying terrain with the assistance of an electric motor with respect to (1) power output, velocity, and electromyography (EMG) signals; (2) cardiorespiratory parameters; (3) energy expenditure (EE); (4) rate of perceived exertion (RPE) and enjoyment and to compare these effects with those of non-assisted cycling. Eight sedentary women (age: 38 ± 15 years, BMI: 25.3 ± 2.1 kg m(-2)) cycled 9.5 km on varying terrain (change in elevation: 102 m, maximum incline: 5.8 %) at their own pace, once with and once without motorized assistance, in randomized order. With electrical assistance, the mean power output (-29 %); EMG patterns of the m. biceps femoris (-49 %), m. vastus lateralis (-33 %), m. vastus medialis (-37 %), and m. gastrocnemius medialis (-29 %); heart rate (-29.1 %); oxygen uptake (-33.0 %); respiratory exchange ratio (-9.0 %); and EE (-36.5 %) were all lower, whereas the mean cycling speed was higher (P < 0.05) than that without such assistance. In addition, following assisted exercise the mean blood lactate concentration and RPE were lower (P < 0.05) and ratings of enjoyment higher (P < 0.05). Moreover, motorized cycling was associated with (1) lower EMG with higher power output and speed; (2) less cardiorespiratory and metabolic effort; (3) lower respiratory exchange ratio; (4) lower RPE with more enjoyment; and (5) sufficient EE, according to present standards, to provide health benefits. Thus, electrically assisted cycling may represent an innovative approach to persuading reluctant sedentary women to exercise.
BackgroundRepeated sprint performance is determined by explosive production of power, as well as rapid recovery between successive sprints, and there is evidence that compression garments and sports taping can improve both of these factors.MethodsIn each of two sub-studies, female athletes performed two sets of 30 30-m sprints (one sprint per minute), one set wearing compression garment with adhesive silicone stripes (CGSS) intended to mimic taping and the other with normal clothing, in randomized order. Sub-study 1 (n = 12) focused on cardio-respiratory, metabolic, hemodynamic and perceptual responses, while neuronal and biomechanical parameters were examined in sub-study 2 (n = 12).ResultsIn both sub-studies the CGSS improved repeated sprint performance during the final 10 sprints (best P < 0.01, d = 0.61). None of the cardio-respiratory or metabolic variables monitored were altered by wearing this garment (best P = 0.06, d = 0.71). Also during the final 10 sprints, rating of perceived exertion by the upper leg muscles was reduced (P = 0.01, d = 1.1), step length increased (P = 0.01, d = 0.91) and activation of the m. rectus femoris elevated (P = 0.01, d = 1.24), while the hip flexion angle was lowered throughout the protocol (best P < 0.01, d = 2.28) and step frequency (best P = 0.34, d = 0.2) remained unaltered.ConclusionAlthough the physiological parameters monitored were unchanged, the CGSS appears to improve performance during 30 30-m repeated sprints by reducing perceived exertion and altering running technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.