The palladium catalyzed cyclotrimerization of ortho-silylaryl triflates as aryne precursors is meanwhile an established method to synthesize polycyclic aromatic hydrocarbons (PAHs) with triphenylene cores. During the palladium-catalyzed reaction of a pyrene with an osilylaryl triflate moiety in the K-region higher homologues with central eight-and ten-membered rings (the pyrenylenes) were found, besides the expected trimer and a protocol was developed to isolate all members of this series. This unprecedented new class of PAHs was fully investigated by all means, including X-ray diffraction of single-crystals, UV/Vis and fluorescence spectroscopy and theoretical calculations. Supported by density-functional theory (DFT) calculations, a mechanism of all higher cyclooligomers is proposed.
In this work, the change of reactivity induced by the introduction of two
para
‐ethynyl substituents (CCSi(
i
Pr)
3
or CCH) to the organic electron‐donor 1,2,4,5‐tetrakis(tetramethylguanidino)‐benzene is evaluated. The redox‐properties and redox‐state dependent fluorescence are evaluated, and dinuclear Cu
I
and Cu
II
complexes synthesized. The Lewis‐acidic B(C
6
F
5
)
3
substitutes the proton of the ethynyl −CCH groups to give new anionic −CCB(C
6
F
5
)
3
−
substituents, leading eventually to a novel dianionic strong electron donor in its diprotonated form. Its two‐electron oxidation with dioxygen in the presence of a copper catalyst yields the first redox‐active guanidine that is neutral (instead of cationic) in its oxidized form.
The palladium catalyzed cyclotrimerization of ortho-silylaryl triflates as aryne precursors is meanwhile an established method to synthesize polycyclic aromatic hydrocarbons (PAHs) with triphenylene cores. During the palladium-catalyzed reaction of a pyrene with an osilylaryl triflate moiety in the K-region higher homologues with central eight-and ten-membered rings (the pyrenylenes) were found, besides the expected trimer and a protocol was developed to isolate all members of this series. This unprecedented new class of PAHs was fully investigated by all means, including X-ray diffraction of single-crystals, UV/Vis and fluorescence spectroscopy and theoretical calculations. Supported by density-functional theory (DFT) calculations, a mechanism of all higher cyclooligomers is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.