Pigment and lipid oxidation was investigated in fresh ground sirloin from control and vitamin E-supplemented (370 I.U./head/day) Holstein steers. Alpha-tocopherol levels were higher (PcO.05) in muscle from supplemented animals than from controls. During 6 days storage at 4"C, metmyoglobin accumulation and lipid oxidation (TBA) were grcatcr (PcO.05) in beef from control versus supplemented animals. TBA value and % metmyoglobin were highly correlated in the control (r=0.91) and supplemented (r=0.72) groups. TBA values of cooked sirloin slices subsequently stored for 2 days at 4"C, and for frozen ground sirloin patties stored at -18°C for 1.5 and 3 months, were lower (P~0.05) in beef from supplemented animals than from controls. Meat which contained in excess of ca. 0.3 mg a-tocopherol/lOO g tissue displayed the least oxidation of both pigments and lipids.
Three experiments were conducted to examine the effects of vitamin E supplementation on feedlot cattle. Vitamin E supplementation did not affect feedlot performance or carcass characteristics of cattle fed a high-concentrate diet (P greater than .1). The major finding was the effectiveness of vitamin E in extending the color stability of displayed beef (P less than .01). Color stability during display of longissimus lumborum steaks from cattle supplemented with 300 IU/d for 266 d, 1,140 IU/d for 67 d, or 1,200 IU/d for 38 d was extended by 2.5 to 4.8 d. Gluteus medius steaks had an extended color display life of 1.6 to 3.8 d. The accumulation of lipid oxidation products, but not aerobic microbes, associated with displayed longissimus lumborum was suppressed for muscle from vitamin E-supplemented steers. Taste panelists detected no difference among longissimus lumborum steaks from control and vitamin E-supplemented steers but found (P less than .01) steaks aged for 21 d to be more tender than steaks aged for 7 d. Supplementing cattle with vitamin E should reduce economic losses associated with discolored beef during retail display.
The outbreak of Escherichia coli O157:H7 linked with dry-cured salami in late 1994 prompted regulatory action that required manufacturers of fermented products to demonstrate a 5-log unit reduction in counts of this pathogen during processing. Therefore, pepperoni batter (75% pork:25% beef with a fat content of ca. 32%) was inoculated with a pediococcal starter culture and a five-strain mixture of E. coli O157:H7 (≥2 × 107 CFU/g) and stuffed into 55-mm diameter fibrous casings 47 cm in length. The viability of the pathogen was monitored before stuffing, after fermentation, after thermal processing, and/or after drying. Chubs were fermented at 96°F (36°C) and 85% relative humidity (RH) to pH ≤ 5.0 and then dried at 55°F (13°C) and 65% RH to a moisture/protein ratio of ≤1.6:1 (modified method 6 process). Counts of the pathogen decreased about 1.2 log units after fermentation and drying. In subsequent experiments, heating chubs after fermentation to internal temperatures of 145°F (63°C) instantaneous or 128°F (53°C) for 60 min resulted in a ≥5-log unit decrease in numbers of strain O157:H7 without visibly affecting the texture or appearance of the product. These data revealed that a traditional nonthermal, process for pepperoni was only sufficient to eliminate relatively low levels (ca. 2 log CFU/g) of E. coli O157:H7, whereas heating to internal temperatures of 145°F (63°C) instantaneous or 128°F (53°C) for 60 min delivered a 5 to 6 log unit reduction in counts of the pathogen in pepperoni.
No abstract
A study to compare procedures and interventions for removing physical and bacterial contamination from beef carcasses was conducted in six carcass conversion operations that were representative of modern, high-volume plants and located in five different states. Treatment procedures included trimming, washing, and the current industry practice of trimming followed by washing. In addition, hot (74 to 87.8°C at the pipe) water washing and rinsing with ozone (0.3 to 2.3 ppm) or hydrogen peroxide (5%) were applied as intervention treatments. Beef carcasses were deliberately contaminated with bovine fecal material at >4.0 log colony-forming units (CFU)/cm2 in order to be better able to observe the decontaminating effects of the treatments. Carcasses were visually scored by 2 to 3 trained personnel for the level of gross contamination before and after treatment. Samples (10 by 15 cm, 0.3 to 0.5 cm thick) for microbiological testing were excised as controls or after application of each procedure or intervention and analyzed for aerobic mesophilic plate counts, Escherichia coli Biotype I counts, and presence or absence of Listeria spp., Salmonella spp., and Escherichia coli O157:H7. Average reductions in aerobic plate counts were 1.85 and 2.00 log CFU/cm2 for the treatments of trimming-washing and hot-water washing, respectively. Hydrogen peroxide and ozone reduced aerobic plate counts by 1.14 and 1.30 log CFU/cm2, respectively. In general, trimming and washing of beef carcasses consistently resulted in low bacterial populations and scores for visible contamination. However, the data also indicated that hot- (74 to 87.8°C at the pipe) water washing was an effective intervention that reduced bacterial and fecal contamination in a consistent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.