Abstract. We show that every additive category with kernels and cokernels admits a maximal exact structure. Moreover, we discuss two examples of categories of the latter type arising from functional analysis.
In this paper we present a characterization whether the restriction \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}^{\prime }:=\lbrace (f,g)\in \mathcal {E}\,\,|\,\,f,g\in \mbox{Mor}({\mathcal {C}}^{\prime })\rbrace$\end{document} of the exact structure \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}$\end{document} of an exact category \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$({\mathcal {C}},\mathcal {E})$\end{document} in the sense of Quillen on a full additive subcategory \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal {C}}^{\prime }$\end{document} of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathcal {C}}$\end{document} is again an exact structure. We apply our characterization to the exact structure \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {E}^{top}_{\mbox{LCS}}$\end{document} of short topologically exact sequences in the quasi‐abelian category \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mbox{LCS}$\end{document} of locally convex spaces and subcategories thereof.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.