An impedance spectrum of dynamic systems is time dependent. Fast impedance changes take place, for example, in high throughput microfluidic devices and in operating cardiovascular systems. Measurements must be as short as possible to avoid significant impedance changes during the spectrum analysis, and as long as possible for enlarging the excitation energy and obtaining a better signal-to-noise ratio (SNR). The authors propose to use specific short chirp pulses for excitation. Thanks to the specific properties of the chirp function, it is possible to meet the needs for a spectrum bandwidth, measurement time and SNR so that the most accurate impedance spectrogram can be obtained. The chirp wave excitation can include thousands of cycles when the impedance changes slowly, but in the case of very high speed changes it can be shorter than a single cycle, preserving the same excitation bandwidth. For example, a 100 kHz bandwidth can be covered by the chirp pulse with durations from 10 µs to 1 s; only its excitation energy differs also 10(5) times. After discussing theoretical short chirp properties in detail, the authors show how to generate short chirps in the microsecond range with a bandwidth up to a few MHz by using digital synthesis architectures developed inside a low-cost standard field programmable gate array.
This paper reports on a novel system architecture for measuring impedance spectra of a biological tissue close to the tip of a hollow needle. The measurement is performed online using fast broadband chirp signals. The time domain measurement raw data are transformed into the transfer function of the tissue in frequency domain. Correlation technique is used to analyze the characteristic shape of the derived tissue transfer function with respect to known "library functions" for different types of tissue derived in earlier experiments. Based on the resulting correlation coefficients the exact type of tissue is determined. A bipolar coaxial needle is constructed, simulated by finite element method and tested during various in vitro and in vivo experiments. The results show a good spatial resolution of approximately 1.0 mm for a needle with a diameter of 2.0 mm. The correlation coefficients for the three tested tissue types muscle, fat, and blood allow for a clear tissue classification. Best results have been obtained using the characteristic phase diagrams for each tissue. Correlated to the corresponding library transfer function the coefficients are in the range of +0.96 to +0.99 for the matching tissue. In return, the resulting coefficients for correlation with nonmatching tissues are in the range of -0.93 to +0.81.
This paper presents a new design for an on-line and in-line hematocrit (HCT) sensor. Special feature of the sensor is the capability to measure the hematocrit of a blood sample inside standard plastic tubing widely used in medical equipment. No blood sample has to be extracted out of existing extracorporeal blood circulation systems such as hemodialysis machines or heart-lung machines. The sensor principle is based on electrical impedance spectroscopy. Dielectric properties of the blood and the plastic tubing are measured at various frequencies. In order to optimize the sensitivity, a unique electrode configuration is developed and optimized by Finite Element Simulation. The new electrode design optimizes the overall sensitivity of the sensor towards a change in dielectric properties of the blood caused by the HCT value and therefore decreases the sensitivity to side effects caused by temperature drift and component tolerances. As a result of the optimized overall sensor performance the complexity of a sensor readout circuitry can be reduced to a minimum which leads to an unmatched price-performance ratio for a complete measurement system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.