In this paper we analyse the non-wandering set of 1D-Greenberg-Hastings cellular automata models for excitable media with e 1 excited and r 1 refractory states and determine its (strictly positive) topological entropy. We show that it results from a Devaney-chaotic closed invariant subset of the non-wandering set that consists of colliding and annihilating travelling waves, which is conjugate to a skew-product dynamical system of coupled shift-dynamics. Moreover, we determine the remaining part of the non-wandering set explicitly as a Markov system with strictly less topological entropy that also scales differently for large e, r.
Motivated by studies of the Greenberg-Hastings cellular automata (GHCA) as a caricature of excitable systems, in this paper we study kink-antikink dynamics in the perhaps simplest PDE model of excitable media given by the scalar reaction diffusion-type $$\theta $$ θ -equations for excitable angular phase dynamics. On the one hand, we qualitatively study geometric kink positions using the comparison principle and the theory of terraces. This yields the minimal initial distance as a global lower bound, a well-defined sequence of collision data for kinks- and antikinks, and implies that periodic pure kink sequences are asymptotically equidistant. On the other hand, we study metastable dynamics of finitely many kinks using weak interaction theory for certain analytic kink positions, which admits a rigorous reduction to ODE. By blow-up type singular rescaling we show that distances become ordered in finite time, and eventually diverge. We conclude that diffusion implies a loss of information on kink distances so that the entropic complexity based on positions and collisions in the GHCA does not simply carry over to the PDE model.
Motivated by studies of the Greenberg-Hastings cellular automata (GHCA) as a caricature of excitable systems, in this paper we study kink-antikink dynamics in the perhaps simplest PDE model of excitable media given by the scalar reaction diffusion-type θ-equations for excitable angular phase dynamics. On the one hand, we qualitatively study geometric kink positions using the comparison principle and the theory of terraces. This yields the minimal initial distance as a global lower bound, a well-defined sequence of collision data for kinks-and antikinks, and implies that periodic pure kink sequences are asymptotically equidistant. On the other hand, we study metastable dynamics of finitely many kinks using weak interaction theory for certain analytic kink positions, which admits a rigorous reduction to ODE. By blow-up type singular rescaling we show that distances become ordered in finite time, and eventually diverge. We conclude that diffusion implies a loss of information on kink distances so that the entropic complexity based on positions and collisions in the GHCA does not simply carry over to the PDE model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.