The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells. However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems. Here, we address this by studying the trends in the activity of the HOR in alkaline environments. We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts. The maximum activity is found for materials (Ir and Pt₀.₁Ru₀.₉) with an optimal balance between the active sites that are required for the adsorption/dissociation of H₂ and for the adsorption of hydroxyl species (OHad). We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species. Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites.
Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.
We report the design and synthesis of multimetallic Au/Pt-bimetallic nanoparticles as a highly durable electrocatalyst for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. This system was first studied on well-defined Pt and FePt thin films deposited on a Au(111) surface, which has guided the development of novel synthetic routes toward shape-controlled Au nanoparticles coated with a Pt-bimetallic alloy. It has been demonstrated that these multimetallic Au/FePt(3) nanoparticles possess both the high catalytic activity of Pt-bimetallic alloys and the superior durability of the tailored morphology and composition profile, with mass-activity enhancement of more than 1 order of magnitude over Pt catalysts. The reported synergy between well-defined surfaces and nanoparticle synthesis offers a persuasive approach toward advanced functional nanomaterials.
Monodisperse and homogeneous PtxNi1‐x alloy nanoparticles of various compositions are synthesized via an organic solution approach in order to reveal the correlation between surface chemistry and their electrocatalytic properties. Atomic‐level microscopic analysis of the compositional profile and modeling of nanoparticle structure are combined to follow the dependence of Ni dissolution on the initial alloy composition and formation of the Pt‐skeleton nanostructures. The developed approach and acquired knowledge about surface structure‐property correlation can be further generalized and applied towards the design of advanced functional nanomaterials.
Monodisperse Pt3Co nanoparticles with size controlled from 3 to 9 nm have been synthesized through an organic solvothermal approach and applied as electrocatalysts for the oxygen reduction reaction. Electrochemical study shows that the Pt3Co nanoparticles are highly active for the oxygen reduction reaction and the activity is size-dependent. The optimal size for maximal mass activity was established to be around 4.5 nm by balancing the electrochemically active surface area and specific activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.