• CFD and 3D printing used for rapid manufacturing of small hydrocyclones.• Experimental and computational studies combined to assess hydrocyclone design.• Novel design with parabolic walls shown to significantly improve separation.• A methodology is presented to optimize hydrocyclone performance through design. A R T I C L E I N F O Keywords:Small hydrocyclone Yeast Simulation 3D printing Dewatering A B S T R A C T The use of small hydrocyclones for the separation of particles in the micron range is of growing interest. However, these hydrocyclones are typically limited to conventional shapes or restricted to specific outlet sizes, which can lead to sub-optimal performance. The aim of this study is to present a method for the optimisation of small hydrocyclone design. This method consists of four steps that combine designing, Computational Fluid Dynamics (CFD) simulations, 3D printing and experimental testing. A 3D printed 10 mm hydrocyclone was shown first to match the performance of a ceramic equivalent, followed by factorial experiments with a set of printed hydrocyclones of different spigot and vortex finder diameters. A CFD model for small hydrocyclones was implemented and, following validation with the experimental data, used to simulate small hydrocyclone designs with parabolic walls. The model predicted improved separation performance compared to the conventional conic wall designs. In a novel development, a 10 mm hydrocyclone with parabolic walls was 3D printed and the prediction confirmed experimentally. The solids recovery and concentration ratio were increased by 10 percentage points and 0.2, respectively, for a 0.5 g/L yeast suspension and at an equivalent pressure drop. The use of 3D printing to manufacture small hydrocyclones of various designs has been proven in this study to be practical and to allow rapid prototyping design informed by CFD simulations. This is a significant improvement in the cost, time and versatility associated to hydrocyclone design and can lead to enhanced separation performance.
Copper-molybdenum grades of important mining deposits have progressively decayed, which is associated with high levels of clay minerals which affect froth flotation. The depressing effect of clay minerals on copper sulfides was previously reported but there are no systematic studies on the effect on molybdenite flotation in seawater. The objective of this work was to study the effect of kaolinite on molybdenite flotation in seawater and to evaluate the use of sodium hexametaphosphate (SHMP) as dispersant. The results of this work show that kaolinite depresses molybdenite flotation which is more significant in seawater at pH > 9. All the experimental data validate the hypothesis that kaolinite covers molybdenite, reducing its flotation recovery. The depressing effect of kaolinite on molybdenite flotation in seawater is enhanced by the magnesium and calcium hydroxo complexes at pH > 9, which induce heterocoagulation between kaolinite and molybdenite, thus reducing recovery. The attachment of the positively charged hydroxo complexes of magnesium and calcium to the molybdenite and kaolinite surfaces is diminished by SHMP. This reagent increases the repulsive forces between molybdenite and precipitates and as a result, molybdenite becomes more hydrophobic and recovery increases.
This work presents validated Computational Fluid Dynamics (CFD) predictions of the effect that changes in vortex finder and spigot diameters have on the classification performance of mini-hydrocyclones. Mini-hydrocyclones (e.g. 10 mm in diameter) have been applied successfully to the separation of micron-sized particles since their bypass fraction is larger than the water recovery, which results in a high particle recovery to the underflow, as well as low water recovery. However, a larger bypass fraction can be a disadvantage when the purpose of the hydrocyclone is particle classification, because of the large amount of fine particles that are misplaced in the underflow.Although it is well known that changes in the outlets of the hydrocyclone affect its performance, there is limited research on the effect of these design
Small hydrocyclones are an attractive technology for biomass separation from fermentation processes. The interactive effect of design parameters on the performance of mini‐hydrocyclones is, however, not fully explored and studies are often limited by the challenges in manufacturing such small units. Here, 10‐mm mini‐hydrocyclones are produced by 3D printing and the impact of spigot diameter, vortex finder diameter and height on separation performance is studied. A central composite rotatable design was adopted to obtain information on the relation between the variables and their influence on concentration ratio and recovery of yeast from a highly diluted system. A Pareto front for separation performance was generated and shown to be suitable to select an optimal design for a set of process constraints.
This study proposes the use of polymeric nanoparticles (NPs) as collectors for copper sulfide flotation. The experimental phase included the preparation of two types of polystyrene-based NPs: St-CTAB and St-CTAB-VI. These NPs were characterized by Fourier-Transform Infrared (FTIR) spectroscopy and dynamic light scattering (DLS). Then, microflotation tests with chalcopyrite under different pH conditions and nanoparticle dosages were carried out to verify their capabilities as chalcopyrite collectors. In addition, the zeta potential (ZP) measurements of chalcopyrite in the presence and absence of NPs were carried out to study their interaction. Lastly, some Atomic Force Micrographs (AFM) of NPs and Scanning Electronic Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis of NPs on the chalcopyrite surface were conducted to analyze the size, the morphology and their interaction. The results obtained at pH 6 and pH 8 show that the NPs under study can achieve a chalcopyrite recovery near or higher than that obtained with the conventional collector. In this study, it was possible to observe that the NPs functionalized by the imidazole group (St-CTAB-VI) achieved better performance due to the presence of this group in its composition, allowing to achieve a greater affinity with the surface of the mineral.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.