ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens.
Sponges often harbour a dense and diverse microbial community. Presently, a large discrepancy exists between the cultivable bacterial fraction from sponges and the community in its natural environment. Here, we aimed to acquire additional insights into cultivability of (previously uncultured) bacteria from three sponge species, namely Aplysina aerophoba, Corticium candelabrum and Petrosia ficiformis, by studying bacterial growth on five media in the form of 60 communities scraped from plates without antibiotics, as well as in the form of individual isolates that were grown on these media supplemented with antibiotics. We applied (double-)barcoded 16S ribosomal RNA (rRNA) gene amplicon sequencing for species identification. We show that previously uncultured bacteria can be cultivated using conventional plating and that application of antibiotics in the media can serve to capture a greater bacterial diversity. Moreover, we present criteria to address an important caveat of the plate scraping method whereby bacteria may be detected that did not actually grow. Fourteen out of 27 cultivated novel taxa (<95% identity of the 16S rRNA gene amplicon to reported species) belong to Actinobacteria, which indicates the presence of a large untapped reservoir of bioactive compounds. Three Flavobacteriaceae spp. were isolated that potentially constitute two new genera and one new species.Electronic supplementary materialThe online version of this article (doi:10.1007/s10126-017-9766-4) contains supplementary material, which is available to authorized users.
Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.
Background: Members of the bacterial family Flavobacteriaceae are widely distributed in the marine environment and often found associated with algae, fish, detritus or marine invertebrates. Yet, little is known about the characteristics that drive their ubiquity in diverse ecological niches. Here, we provide an overview of functional traits common to taxonomically diverse members of the family Flavobacteriaceae from different environmental sources, with a focus on the Marine clade. We include seven newly sequenced marine sponge-derived strains that were also tested for gliding motility and antimicrobial activity. Results: Comparative genomics revealed that genome similarities appeared to be correlated to 16S rRNA geneand genome-based phylogeny, while differences were mostly associated with nutrient acquisition, such as carbohydrate metabolism and gliding motility. The high frequency and diversity of genes encoding polymerdegrading enzymes, often arranged in polysaccharide utilization loci (PULs), support the capacity of marine Flavobacteriaceae to utilize diverse carbon sources. Homologs of gliding proteins were widespread among all studied Flavobacteriaceae in contrast to members of other phyla, highlighting the particular presence of this feature within the Bacteroidetes. Notably, not all bacteria predicted to glide formed spreading colonies. Genome mining uncovered a diverse secondary metabolite biosynthesis arsenal of Flavobacteriaceae with high prevalence of gene clusters encoding pathways for the production of antimicrobial, antioxidant and cytotoxic compounds. Antimicrobial activity tests showed, however, that the phenotype differed from the genome-derived predictions for the seven tested strains. Conclusions: Our study elucidates the functional repertoire of marine Flavobacteriaceae and highlights the need to combine genomic and experimental data while using the appropriate stimuli to unlock their uncharted metabolic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.