Summary• Here, we tested whether rapid changes in carbohydrate transport and partitioning to storage organs would be induced by jasmonic acid (JA), a plant-produced signal of herbivore attack known to induce resistance.• Carbon-11, introduced as 11 CO 2 , was used to track real-time carbohydrate transport and partitioning nondestructively in Populus species before and 12 h after application of JA to a single leaf.• Jasmonic acid resulted in more rapid [ 11 C]-photosynthate export from both local and systemic leaves, as well as greater partitioning of [ 11 C]-photosynthate to the stem and roots. In Populus tremuloides , following JA treatment, leaf starch decreased, but there was no change in photosynthetic rates or leaf soluble sugar concentration, indicating that recent photosynthate was diverted from starch accumulation in the leaf to other plant organs.• Increasing the supply of photosynthate to roots and stems may shield resources from folivorous predators, and may also facilitate both storage and nutrient uptake, and ultimately lead to greater tolerance, either by enhancing regrowth capacity or by replacing nutrients consumed by herbivores.
Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus Isoprene emission occurs from the leaves of many but not all plant species. It is produced enzymatically in the chloroplast from dimethylallyl diphosphate (DMADP; Silver and
Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.