The purpose of the present study was to test the hypothesis that leg blood flow responses during submaximal cycle ergometry are reduced with age in healthy normally active men. Eleven younger (20-25 yr) and eight older (62-73 yr) normotensive, nonendurance-trained men performed both graded and constant-load bouts of leg cycling at the same absolute and relative [% of peak O(2) consumption (Vo(2 peak))] exercise intensities while leg blood flow (femoral vein thermodilution), mean arterial pressure (MAP; radial artery), cardiac output (acetylene rebreathing), blood O(2) content, and plasma catecholamines were measured. Leg blood flow responses at the same absolute submaximal power outputs (20-100 W) and at a fixed systemic O(2) demand (1.1 l/min) did not differ between groups (P = 0.14-0.19), despite lower absolute levels of cardiac output in the older men (P < 0.05). MAP at the same absolute power outputs was 8-12 mmHg higher (P < 0.05) in the older men, but calculated leg vascular conductance responses (leg blood flow/MAP) were identical in the two groups (P > 0.9). At the same relative intensity (60% Vo(2 peak)), leg norepinephrine spillover rates were approximately twofold higher in the older men (P = 0.38). Exercise-induced increases in leg arterial-venous O(2) difference were identical between groups (P > 0.9) because both arterial and venous O(2) contents were lower in the older vs. younger men. These results suggest that the ability to augment active limb blood flow and O(2) extraction during submaximal large muscle mass exercise is not impaired but is well preserved with age in healthy men who are normally active.
A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.