Quantifying the uncertainty of neural networks (NNs) has been required by many safety-critical applications such as autonomous driving or medical diagnosis. Recently, Bayesian transformers have demonstrated their capabilities in providing high-quality uncertainty estimates paired with excellent accuracy. However, their real-time deployment is limited by the compute-intensive attention mechanism that is core to the transformer architecture, and the repeated Monte Carlo sampling to quantify the predictive uncertainty. To address these limitations, this paper accelerates Bayesian transformers via both algorithmic and hardware optimizations. On the algorithmic level, an evolutionary algorithm (EA)-based framework is proposed to exploit the sparsity in Bayesian transformers and ease their computational workload. On the hardware level, we demonstrate that the sparsity brings hardware performance improvement on our optimized CPU and GPU implementations. An adaptable hardware architecture is also proposed to accelerate Bayesian transformers on an FPGA. Extensive experiments demonstrate that the EA-based framework, together with hardware optimizations, reduce the latency of Bayesian transformers by up to 13, 12 and 20 times on CPU, GPU and FPGA platforms respectively, while achieving higher algorithmic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.