Reliable flood damage assessment is important for decision-making in flood risk management.Flood damage assessment is often done with damage curves based only on water depth. These depthdamage curves are usually developed based on data from a specific location and specific flood conditions. Such depth-damage curves tend to be applied outside the scope of their validity. Validation studies show that in such cases depth-damage curve are not very reliable, probably due to excluded influencing variables. The expectation is that the inclusion of more variables in a damage function will improve its transferability. We compare multi-variable models based on Bayesian Networks and Random Forests developed on the basis of flood damage data sets from Germany and The Netherlands. The performance of the models is tested on a validation sub-set of both countries' data. The models are also updated with data from the other country and then tested again. The results show that the German models (BN/RF-FLEMOps) perform better in the Netherlands than the Dutch models (BN/RF-Meuse) perform in Germany. This is probably because the FLEMOps models are based on more heterogeneous data than the Meuse models. The FLEMOps models, therefore, are better able to capture damages processes from other events and in other locations. Model performance improves via updating the models with data from the location to which the model is transferred to. The results show that there is high potential to develop improved damage models, by training multi-variable models with heterogeneous data, for example from multiple flood events and locations.
Abstract. This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage functions and maximum damages can have large effects on flood damage estimates. This explanation is then used to quantify the uncertainty in the damage estimates with a Monte Carlo analysis. The Monte Carlo analysis uses a damage function library with 272 functions from seven different flood damage models. The paper shows that the resulting uncertainties in estimated damages are in the order of magnitude of a factor of 2 to 5. The uncertainty is typically larger for flood events with small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over-or under-investments.
Abstract. Flood damage assessment is usually done with damage curves only dependent on the water depth. Several recent studies have shown that supervised learning techniques applied to a multi-variable data set can produce significantly better flood damage estimates. However, creating and applying a multi-variable flood damage model requires an extensive data set, which is rarely available, and this is currently holding back the widespread application of these techniques. In this paper we enrich a data set of residential building and contents damage from the Meuse flood of 1993 in the Netherlands, to make it suitable for multi-variable flood damage assessment. Results from 2-D flood simulations are used to add information on flow velocity, flood duration and the return period to the data set, and cadastre data are used to add information on building characteristics. Next, several statistical approaches are used to create multi-variable flood damage models, including regression trees, bagging regression trees, random forest, and a Bayesian network. Validation on data points from a test set shows that the enriched data set in combination with the supervised learning techniques delivers a 20 % reduction in the mean absolute error, compared to a simple model only based on the water depth, despite several limitations of the enriched data set. We find that with our data set, the tree-based methods perform better than the Bayesian network.
Abstract:The Netherlands has just finished implementing the Room for the Rivers program along the Rhine and Meuse Rivers in response to increasing river discharges. Recently, making more room for the river is, however, being challenged for future application because the flood defenses are assessed to be too weak and will need reinforcement anyway. To be able to decide on the most desirable policy for the remainder of the century, we require knowledge of all benefits and costs of individual interventions and strategic alternatives for flood mitigation. In this paper, we quantify some benefits of making more room for the rivers. We recognize and quantify two risk-reducing effects and provide results of analyses for the Rhine and Meuse Rivers in The Netherlands. Making room for rivers was originally advocated because it (1) reduces the consequences of flooding, as well as (2) reduces the probability of failure of the embankments. We have now quantified these effects allowing translation into risk reduction proper. Moreover, larger floodplain surface area may influence the relationship between discharge and flood level, which implies that rivers with widened floodplains are less sensitive to uncertainties about future river discharges. This does not reduce risk proper, but makes the river system more robust, as we shall argue in the discussion where we present risk reduction and robustness as complementary perspectives for assessing strategic alternatives for flood risk management.
Abstract. This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. As input the Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. The resulting uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.