We calculated diffusion timescales for Ca, Mg, Fe in hydrogen atmosphere white dwarfs with temperatures between 5000 and 25 000 K. With these timescales we determined accretion rates for a sample of 38 DAZ white dwarfs from the recent studies of Zuckerman et al. (2003, ApJ, 596, 477) and Koester et al. (2005Koester et al. ( , A&A, 432, 1025. Assuming that the accretion rates can be calculated with the Bondi-Hoyle formula for hydrodynamic accretion, we obtained estimates for the interstellar matter density around the accreting objects. These densities are in good agreement with new data about the warm, partially ionized phase of the ISM in the solar neighborhood.
We investigate the landscape development of the early Mesolithic hunter-gatherer sites of Duvensee (10000–6500 cal. BCE). Based on ground-penetrating radar (GPR) and geoarchaeological drillings, we present for the first time a three-dimensional (3D) reconstruction of the palaeoenvironment of 63 ha covering subarea of the former lake during the Mesolithic. The archaeological aims were (1) to detect the location of former islands possibly hosting hunter-gatherer settlements and (2) to reconstruct the ancient landscape development for understanding prehistoric land use. The research in Duvensee lasts almost 100 years, providing vivid illustrations of early Mesolithic life. Clusters of Mesolithic camps have been found located on small sand hills that formed islands in the prehistoric lake. For this environment, we present depth maps of the three most important sedimentary facies interfaces of the ancient Lake Duvensee. Interface1 represents the transition between coarse organic sediments (peat and coarse detritus gyttja) and fine-grained organic sediments (fine detritus gyttja, calcareous gyttja), Interface2 represents the transition to the underlying clayish-loamy sediments, and Interface3 marks the top of the basal sand deposits at the lake bottom. From Interface3, we identified the location and extent of five former islands with Mesolithic camps. Stratigraphic information from the corings enabled us to create a 3D model of the spatio-temporal development of the Duvensee bog. The locations of the islands and their estimated dive-up times agree with the spatio-temporal pattern of the previous archaeological finds. The model shows where hunter-gatherers could settle and move from one island to another following the shorelines of the overgrowing lake. The 3D stratigraphic model provides growth and shrinking rates of the island and lake areas in the Mesolithic, and volumes of organic and non-organic deposited lake sediments. Besides, it provides a basis for a sustainable groundwater management needed for heritage preservation.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village Čachtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.