Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles (NFT) is a defining feature of Alzheimer’s disease (AD), with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in C. elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome (ML) morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator Drp1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to AD pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and ML neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for Drp1-independent, Pink1-dependent, perhaps adaptive, mitophagy.
Background: Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles (NFT) is a defining feature of Alzheimer’s Disease (AD), with specific epitopes such as Tau pT231 emerging early in the development of tau pathology. Previously, we demonstrated that a phosphomimetic mutant (T231E) of human tau drove the loss of neuronal function and structural integrity with age in a novel C. elegans single-copy gene insertion AD model. A critical finding was that T231E, unlike wild type tau, suppressed oxidative stress-induced mitochondrial autophagy, or mitophagy. Regulation of mitochondrial morphology by fission is important for mitophagy, which has been reported to be dysregulated by AD-relevant tau species. Dynamin Related Protein 1 (Drp1) is a GTPase that plays a central role in mediating mitochondrial fission, and its altered function may contribute to AD pathogenesis. Methods: Genetically-encoded fluorescent biosensors and dynamic imaging approaches were combined with a genomic drp-1(-) loss-of-function and transgenic tau mutants to derive a comprehensive in vivo analysis of age-associated changes in mitochondria and mitolysosome (ML) morphology, abundance, neurite trafficking, and stress-induced mitophagy. Results: Strain expressing disease-associated PTM mimetic Tau T231E demonstrated a surprisingly selective effect on ML development and trafficking, with no effect on lysosomes or autolysosomes, and a subtle effect on mitochondria that was apparent mainly in older animals. Unexpectedly, we found that drp-1(-) mutants mount a robust mitophagy response to oxidative stress, consistent with recent observations that adaptive mitophagy may occur independent of the canonical DRP1 pathway. Moreover, T231E continued to suppress oxidative stress-induced mitophagy in the drp-1(-) background. Conclusions: Our C. elegans single-copy gene insertion model unveils multiple levels of selectivity – phenotypic selectivity for mutations that mimic pathologic tauopathy-associated PTM and physiologic selectivity for organelles that contain damaged mitochondria. In addition, our novel findings provide compelling support for DRP1-independent mechanisms playing a pivotal role in regulating mitochondrial dynamics and function in the context of AD-relevant tau species and age-associated stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.