The usage of psychological networks that conceptualize behavior as a complex interplay of psychological and other components has gained increasing popularity in various research fields. While prior publications have tackled the topics of estimating and interpreting such networks, little work has been conducted to check how accurate (i.e., prone to sampling variation) networks are estimated, and how stable (i.e., interpretation remains similar with less observations) inferences from the network structure (such as centrality indices) are. In this tutorial paper, we aim to introduce the reader to this field and tackle the problem of accuracy under sampling variation. We first introduce the current state-of-the-art of network estimation. Second, we provide a rationale why researchers should investigate the accuracy of psychological networks. Third, we describe how bootstrap routines can be used to (A) assess the accuracy of estimated network connections, (B) investigate the stability of centrality indices, and (C) test whether network connections and centrality estimates for different variables differ from each other. We introduce two novel statistical methods: for (B) the correlation stability coefficient, and for (C) the bootstrapped difference test for edge-weights and centrality indices. We conducted and present simulation studies to assess the performance of both methods. Finally, we developed the free R-package bootnet that allows for estimating psychological networks in a generalized framework in addition to the proposed bootstrap methods. We showcase bootnet in a tutorial, accompanied by R syntax, in which we analyze a dataset of 359 women with posttraumatic stress disorder available online.Electronic supplementary materialThe online version of this article (doi:10.3758/s13428-017-0862-1) contains supplementary material, which is available to authorized users.
In network approaches to psychopathology, disorders result from the causal interplay between symptoms (e.g., worry → insomnia → fatigue), possibly involving feedback loops (e.g., a person may engage in substance abuse to forget the problems that arose due to substance abuse). The present review examines methodologies suited to identify such symptom networks and discusses network analysis techniques that may be used to extract clinically and scientifically useful information from such networks (e.g., which symptom is most central in a person's network). The authors also show how network analysis techniques may be used to construct simulation models that mimic symptom dynamics. Network approaches naturally explain the limited success of traditional research strategies, which are typically based on the idea that symptoms are manifestations of some common underlying factor, while offering promising methodological alternatives. In addition, these techniques may offer possibilities to guide and evaluate therapeutic interventions.
We present the qgraph package for R, which provides an interface to visualize data through network modeling techniques. For instance, a correlation matrix can be represented as a network in which each variable is a node and each correlation an edge; by varying the width of the edges according to the magnitude of the correlation, the structure of the correlation matrix can be visualized. A wide variety of matrices that are used in statistics can be represented in this fashion, for example matrices that contain (implied) covariances, factor loadings, regression parameters and p values. qgraph can also be used as a psychometric tool, as it performs exploratory and confirmatory factor analysis, using sem and lavaan; the output of these packages is automatically visualized in qgraph, which may aid the interpretation of results. In this article, we introduce qgraph by applying the package functions to data from the NEO-PI-R, a widely used personality questionnaire.
52% Yes, a signiicant crisis 3% No, there is no crisis 7% Don't know 38% Yes, a slight crisis 38% Yes, a slight crisis 1,576 RESEARCHERS SURVEYED M ore than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments. Those are some of the telling figures that emerged from Nature's survey of 1,576 researchers who took a brief online questionnaire on reproducibility in research. The data reveal sometimes-contradictory attitudes towards reproduc-ibility. Although 52% of those surveyed agree that there is a significant 'crisis' of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature. Data on how much of the scientific literature is reproducible are rare and generally bleak. The best-known analyses, from psychology 1 and cancer biology 2 , found rates of around 40% and 10%, respectively. Our survey respondents were more optimistic: 73% said that they think that at least half of the papers in their field can be trusted, with physicists and chemists generally showing the most confidence. The results capture a confusing snapshot of attitudes around these issues, says Arturo Casadevall, a microbiologist at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland. "At the current time there is no consensus on what reproducibility is or should be. " But just recognizing that is a step forward, he says. "The next step may be identifying what is the problem and to get a consensus. "
In recent years, the network approach to psychopathology has been advanced as an alternative way of conceptualizing mental disorders. In this approach, mental disorders arise from direct interactions between symptoms. Although the network approach has led to many novel methodologies and substantive applications, it has not yet been fully articulated as a scientific theory of mental disorders. The present paper aims to develop such a theory, by postulating a limited set of theoretical principles regarding the structure and dynamics of symptom networks. At the heart of the theory lies the notion that symptoms of psychopathology are causally connected through myriads of biological, psychological and societal mechanisms. If these causal relations are sufficiently strong, symptoms can generate a level of feedback that renders them self-sustaining. In this case, the network can get stuck in a disorder state. The network theory holds that this is a general feature of mental disorders, which can therefore be understood as alternative stable states of strongly connected symptom networks. This idea naturally leads to a comprehensive model of psychopathology, encompassing a common explanatory model for mental disorders, as well as novel definitions of associated concepts such as mental health, resilience, vulnerability and liability. In addition, the network theory has direct implications for how to understand diagnosis and treatment, and suggests a clear agenda for future research in psychiatry and associated disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.