Numerous studies have shown the presence of DNA strand breaks in human ejaculated spermatozoa. The nature of this nuclear anomaly and its relationship to patient etiology is however poorly understood. The aim of this study was to investigate the relationship between nuclear DNA damage, assessed using the TUNEL assay and a number of key apoptotic markers, including Fas, Bcl-x, and p53, in ejaculated human spermatozoa from men with normal and abnormal semen parameters. We also determined the nature of the DNA damage by examining the percentage of ejaculated spermatozoa exhibiting DNA damage using the comet assay and by challenging sperm chromatin to attack by micrococcal nuclease S7 and DNase I. We show that TUNEL positivity and apoptotic markers do not always exist in unison; however, semen samples that had a low sperm concentration and poor morphology were more likely to show high levels of TUNEL positivity and Fas and p53 expression. In addition, the DNA damage in ejaculated human sperm is represented by both single- and double-stranded DNA breaks, and access to the DNA is restricted by the compacted nature of ejaculated spermatozoa. This DNA protection is poorer in men with abnormal semen parameters. We propose that the presence of DNA damage is not directly linked to an apoptotic process occurring in spermatozoa and arises due to problems in the nuclear remodeling process. Subsequently, the presence of apoptotic proteins in ejaculated spermatozoa may be linked to defects in cytoplasmic remodeling during the later stages of spermatogenesis.
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility
via
a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.