In this work, we set out to better understand how the permeation enhancer sodium caprate (C10) influences the intestinal absorption of macromolecules. FITC-dextran 4000 (FD4) was selected as a model compound and formulated with 50–300 mM C10. Absorption was studied after bolus instillation of liquid formulation to the duodenum of anesthetized rats and intravenously as a reference, whereafter plasma samples were taken and analyzed for FD4 content. It was found that the AUC and C max of FD4 increased with increasing C10 concentration. Higher C10 concentrations were associated with an increased and extended absorption but also increased epithelial damage. Depending on the C10 concentration, the intestinal epithelium showed significant recovery already at 60–120 min after administration. At the highest studied C10 concentrations (100 and 300 mM), the absorption of FD4 was not affected by the colloidal structures of C10, with similar absorption obtained when C10 was administered as micelles (pH 8.5) and as vesicles (pH 6.5). In contrast, the FD4 absorption was lower when C10 was administered at 50 mM formulated as micelles as compared to vesicles. Intestinal dilution of C10 and FD4 revealed a trend of decreasing FD4 absorption with increasing intestinal dilution. However, the effect was smaller than that of altering the total administered C10 dose. Absorption was similar when the formulations were prepared in simulated intestinal fluids containing mixed micelles of bile salts and phospholipids and in simple buffer solution. The findings in this study suggest that in order to optimally enhance the absorption of macromolecules, high (≥100 mM) initial intestinal C10 concentrations are likely needed and that both the concentration and total dose of C10 are important parameters.
In this work, we studied the intestinal absorption of a peptide with a molecular weight of 4353 Da (MEDI7219) and a protein having a molecular weight of 11 740 Da (PEP12210) in the rat intestinal instillation model and compared their absorption to fluorescein isothiocyanate (FITC)-labeled dextrans of similar molecular weights (4 and 10 kDa). To increase the absorption of the compounds, the permeation enhancer sodium caprate (C10) was included in the liquid formulations at concentrations of 50 and 300 mM. All studied compounds displayed an increased absorption rate and extent when delivered together with 50 mM C10 as compared to control formulations not containing C10. The time period during which the macromolecules maintained an increased permeability through the intestinal epithelium was approximately 20 min for all studied compounds at 50 mM C10. For the formulations containing 300 mM C10, it was noted that the dextrans displayed an increased absorption rate (compared to 50 mM C10), and their absorption continued for at least 60 min. The absorption rate of MEDI7219, on the other hand, was similar at both studied C10 concentrations, but the duration of absorption was extended at the higher enhancer concentration, leading to an increase in the overall extent of absorption. The absorption of PEP12210 was similar in terms of the rate and duration at both studied C10 concentrations. This is likely caused by the instability of this molecule in the intestinal lumen. The degradation decreases the luminal concentrations over time, which in turn limits absorption at time points beyond 20 min. The results from this study show that permeation enhancement effects cannot be extrapolated between different types of macromolecules. Furthermore, to maximize the absorption of a macromolecule delivered together with C10, prolonging the duration of absorption appears to be important. In addition, the macromolecule needs to be stable enough in the intestinal lumen to take advantage of the prolonged absorption time window enabled by the permeation enhancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.