Target tracking technologies in wireless sensor network (WSNs) environments fall into two categories: active and passive schemes. Unlike with the active positioning schemes, in which the targets are required to hold cooperative devices, the research on passive tracking, i.e., tracking device-free targets, has recently showed promise. In the WSN, device-free targets can be tracked by sensing radio frequency tomography (RFT) on the line-of-sight links (LOSLs). In this paper, we propose a passive tracking scheme exploiting both adaptive-networking LOSL webs and geometric constraint methodology for tracking single targets, as well as multiple targets. Regarding fundamental knowledge, we firstly explore the spatial diversity technique for RFT detection in realistic situations. Then, we analyze the power consumption of the WSN and propose an adaptive networking scheme for the purpose of energy conservation. Instead of maintaining a fixed LOSL density, the proposed scheme can adaptively adjust the networking level to save energy while guaranteeing tracking accuracy. The effectiveness of the proposed scheme is evaluated with computer simulations. According to the results, it is observed that the proposed scheme can sufficiently reduce power consumption, while providing qualified tracking performance.
Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes.
In this paper, we proposed ultrasonic radar module and fixed module for the 2D indoor map building and from each of the modules, we can see the possibilities, limitations and considerations. And finally show the result of building actual 2D indoor map from the modules. Recently there are lots of works for the building indoor map by spotlight on the simultaneous localization and mapping (SLAM). And the LiDAR, ultrasonic, camera sensors are usually used for this work. Especially the LiDAR sensor have a higher resolution and wider detection range more than the ultrasonic sensor, but also there are limitation in the size of module, higher cost, much more throughput of processing data, and weaker to use in various indoor environment noises. So from these reasons, in this paper we could verify that proposed modules and schemes have a enough performance to build the 2D indoor map instead of using LiDAR and camera sensor with minimum number of ultrasonic sensors and less throughput of processing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.