A novel cytidine analog fluorocyclopentenylcytosine (RX-3117; TV-1360) was characterized for its cytotoxicity in a 59-cell line panel and further characterized for cytotoxicity, metabolism and mechanism of action in 15 additional cancer cell lines, including gemcitabine-resistant variants. In both panels sensitivity varied 75-fold (IC50: 0.4- > 30 μM RX-3117). RX-3117 showed a different sensitivity profile compared to cyclopentenyl-cytosine (CPEC) and azacytidine, substrates for uridine-cytidine-kinase (UCK). Dipyridamole, an inhibitor of the equilibrative-nucleoside-transporter protected against RX-3117. Uridine and cytidine protected against RX-3117, but deoxycytidine (substrate for deoxycytidine-kinase [dCK]) not, although it protected against gemcitabine, demonstrating that RX-3117 is a substrate for UCK and not for dCK. UCK activity was abundant in all cell lines, including the gemcitabine-resistant variants. RX-3117 was a very poor substrate for cytidine deaminase (66,000-fold less than gemcitabine). RX-3117 was rapidly metabolised to its nucleotides predominantly the triphosphate, which was highest in the most sensitive cells (U937, A2780) and lowest in the least sensitive (CCRF-CEM). RX-3117 did not significantly affect cytidine and uridine nucleotide pools. Incorporation of RX-3117 into RNA and DNA was higher in sensitive A2780 and low in insensitive SW1573 cells. In sensitive U937 cells 1 μM RX-3117 resulted in 90% inhibition of RNA synthesis but 100 μM RX-3117 was required in A2780 and CCRF-CEM cells. RX-3117 at IC50 values did not affect the integrity of RNA. DNA synthesis was completely inhibited in sensitive U937 cells at 1 μM, but in other cells even higher concentrations only resulted in a partial inhibition. At IC50 values RX-3117 downregulated the expression of DNA methyltransferase. In conclusion, RX-3117 showed a completely different sensitivity profile compared to gemcitabine and CPEC, its uptake is transporter dependent and is activated by UCK. RX-3117 is incorporated into RNA and DNA, did not affect RNA integrity, depleted DNA methyltransferase and inhibited RNA and DNA synthesis. Nucleotide formation is related with sensitivity.
1-(3,5-Dimethoxyphenyl)-4-[(6-fluoro-2-methoxyquinoxalin-3-yl)aminocarbonyl] piperazine (RX-5902) exhibits strong growth inhibition in various human cancer cell lines with IC50 values ranging between 10 and 20 nM. In this study, we demonstrate that p68 RNA helicase is a cellular target of RX-5902 by the drug affinity responsive target stability (DARTS) method, and confirmed the direct binding of (3) H-labeled RX-5902 to Y593 phospho-p68 RNA helicase. We further demonstrated RX-5902 inhibited the β-catenin dependent ATPase activity of p68 RNA helicase in an in vitro system. Furthermore, we showed that treatment of cancer cells with RX-5902 resulted in the downregulation of the expression of certain genes, which are known to be regulated by the β-catenin pathway, such as c-Myc, cyclin D1 and p-c-Jun. Therefore, our study indicates that the inhibition of Y593 phospho-p68 helicase - β-catenin interaction by direct binding of RX-5902 to Y593 phospho-p68 RNA helicase may contribute to the anti-cancer activity of this compound.
Clavulanic acid is a psychoactive compound with excellent blood-brain barrier permeability and safety profiles. Previous studies showed that clavulanic acid suppresses anxiety in rodents and in a primate model. In addition, clavulanic acid is thought to enhance sexual function in animal models via central nervous system (CNS) mechanisms. To further examine its potential as a CNSmodulating agent, we investigated the effects of clavulanic acid in neurotoxin-induced animal models that emulate neurodegenerative disease symptoms. Clavulanic acid was administered to rodents that were exposed to kainic acid or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Using histochemical staining of brain sections, we demonstrated that clavulanic acid protects hippocampal and dopaminergic neurons from toxin-induced acute death. We also observed that clavulanic acid improves motor function in MPTP-treated mice in a behavioral test. These data indicate that clavulanic acid may have neuroprotective effects and warrants further investigation of its therapeutic use in CNS disorders, such as Parkinson's and Alzheimer's disease. Drug Dev Res 71: 351-357, 2010.
RX-5902 is a first-in-class anticancer agent targeting phosphorylated-p68 and attenuating nuclear shuttling of b-catenin. The purpose of this study was to evaluate the efficacy of RX-5902 in preclinical models of triple-negative breast cancer (TNBC) and to explore effects on b-catenin expression. A panel of 18 TNBC cell lines was exposed to RX-5902, and changes in proliferation, apoptosis, cellular ploidy, and effector protein expression were assessed. Gene expression profiling was used in sensitive and resistant cell lines with pathway analysis to explore pathways associated with sensitivity to RX-5902. The activity of RX-5902 was confirmed in vivo in cell line and patient-derived tumor xenograft (PDX) models. RX-5902 demonstrated potent antiproliferative activity in vitro against TNBC cell lines with an average IC 50 of 56 nmol/L in sensitive cell lines. RX-5902 treatment resulted in the induction of apoptosis, G 2 -M cellcycle arrest, and aneuploidy in a subset of cell lines. RX-5902 was active in vivo against TNBC PDX models, and treatment resulted in a decrease in nuclear b-catenin. RX-5902 exhibited doseproportional pharmacokinetics and plasma and tumor tissue in nude mice. Pathway analysis demonstrated an increase in the epithelial-to-mesenchymal transformation (EMT), TGFb, and Wnt/b-catenin pathways associated with sensitivity to RX-5902. RX-5902 is active against in vitro and in vivo preclinical models of TNBC. Target engagement was confirmed with decreases in nuclear b-catenin and MCL-1 observed, confirming the proposed mechanism of action. This study supports the continued investigation of RX-5902 in TNBC and combinations with immunotherapy.
Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear β-catenin signaling. The purpose of this study was to evaluate the ability of β-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC. Methods Treatment with RX-5902, anti-PD-1, anti-CTLA-4 or the combination was investigated in BALB/c mice injected with the 4 T1 TNBC cell line. Humanized BALB/c-Rag2nullIl2rγnullSIRPαNOD (hu-CB-BRGS) mice transplanted with a human immune system were implanted with MDA-MB-231 cells. Mice were randomized into treatment groups according to human hematopoietic chimerism and treated with RX-5902, anti-PD-1 or the combination. At sacrifice, bone marrow, lymph nodes, spleen and tumors were harvested for flow cytometry analysis of human immune cells. Results The addition of RX-5902 to CTLA-4 or PD-1 inhibitors resulted in decreased tumor growth in the 4 T1 and human immune system and MDA-MB-231 xenograft models. Immunologic analyses demonstrated a significant increase in the number of activated T cells in tumor infiltrating lymphocytes (TILs) with RX-5902 treatment compared to vehicle (p < 0.05). In the RX-5902/nivolumab combination group, there was a significant increase in the percentage of CD4+ T cells in TILs and increased systemic granzyme B production (p < 0.01). Conclusions Conclusions: RX-5902 enhanced the efficacy of nivolumab in a humanized, preclinical model of TNBC. Several changes in immunologic profiles were noted in mice treated with RX-5902 and the combination, including an increase in activated TILs and a decrease in human myeloid populations, that are often associated with immunosuppression in a tumor microenvironment. RX-5902 also was shown to potentiate the effects of checkpoint inhibitors of CTLA4 and the PD-1 inhibitor in the 4 T-1 murine TNBC model. These findings indicate that RX-5902 may have important immunomodulatory, as well as anti-tumor activity, in TNBC when combined with a checkpoint inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.