Parkinson's disease (PD), one of the most common neurodegenerative disorders, is characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) to the striatum (ST), and involves oxidative stress. Mulberry fruit from Morus alba L. (Moraceae) is commonly eaten, and has long been used in traditional oriental medicine. It contains well-known antioxidant agents such as anthocyanins. The present study examined the protective effects of 70 % ethanol extract of mulberry fruit (ME) against neurotoxicity in in vitro and in vivo PD models. In SH-SY5Y cells stressed with 6-hydroxydopamine (6-OHDA), ME significantly protected the cells from neurotoxicity in a dose-dependent manner. Other assays demonstrated that the protective effect of ME was mediated by its antioxidant and anti-apoptotic effects, regulating reactive oxygen species and NO generation, Bcl-2 and Bax proteins, mitochondrial membrane depolarisation and caspase-3 activation. In mesencephalic primary cells stressed with 6-OHDA or 1-methyl-4-phenylpyridinium (MPP þ), pre-treatment with ME also protected dopamine neurons, showing a wide range of effective concentrations in MPP þ -induced toxicity. In the sub-acute mouse PD model induced by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), ME showed a preventative effect against PD-like symptoms (bradykinesia) in the behavioural test and prevented MPTP-induced dopaminergic neuronal damage in an immunocytochemical analysis of the SNpc and ST. These results indicate that ME has neuroprotective effects in in vitro and in vivo PD models, and that it may be useful in preventing or treating PD.
Continence and micturition involve urethral closure. Especially, insufficient strength of the pelvic floor muscles including the urethral sphincter muscles causes urinary incontinence (UI). Thus, it is most important to understand the main mechanism causing UI and the relationship of UI with the urethral sphincter. Functionally and anatomically, the urethral sphincter is made up of the internal and the external sphincter. We highlight the basic and clinical anatomy of the internal and the external sphincter and their clinical meaning. Understanding these relationships may provide a novel view in identifying the main mechanism causing UI and surgical techniques for UI.
A major obstacle in luminescence imaging is the limited penetration of visible light into tissues and interference associated with light scattering and autofluorescence. Near-infrared (NIR) emitters that can also be excited with NIR radiation via two-photon processes can mitigate these factors somewhat because they operate at wavelengths of 650-1000 nm where tissues are more transparent, light scattering is less efficient, and endogenous fluorophores are less likely to absorb. This study presents photolytically stable, NIR photoluminescent, porous silicon nanoparticles with a relatively high two-photon-absorption cross-section and a large emission quantum yield. Their ability to be targeted to tumor tissues in vivo using the iRGD targeting peptide is demonstrated, and the distribution of the nanoparticles with high spatial resolution is visualized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.