Recently, studies on the relationship between gut dysbiosis and Parkinson’s disease (PD) have increased, but whether a specific gut bacterium may cause PD remains unexplored. Here, we report, for the first time, that a specific gut bacterium directly induces PD symptoms and dopaminergic neuronal damage in the mouse brain. We found that the number of Enterobacteriaceae, particularly Proteus mirabilis, markedly and commonly increased in PD mouse models. Administration of P. mirabilis isolated from PD mice significantly induced motor deficits, selectively caused dopaminergic neuronal damage and inflammation in substantia nigra and striatum, and stimulated α-synuclein aggregation in the brain as well as in the colon. We found that lipopolysaccharides, a virulence factor of P. mirabilis, may be associated in these pathological changes via gut leakage and inflammatory actions. Our results suggest a role of P. mirabilis on PD pathogenesis in the brain.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and loss of neurons. Recently, it has been shown that ghrelin, a 28 amino acid peptide hormone produced from the stomach and hypothalamus, has been reported as a potential therapeutic agent for several neurological disorders, including Parkinson's disease (PD), stroke, epilepsy, multiple sclerosis, and spinal cord injury. Here we determined the effects of ghrelin on memory impairments and neuropathological changes in an AD mouse model induced by intrahippocampal injection of amyloid-β oligomers (AβO). We report that ghrelin: 1) rescues memory deficits in mice injected with AβO in the hippocampus; 2) decreases AβO-induced microgliosis in hippocampus; 3) attenuates hippocampal neuronal loss mediated by AβO; 4) prevents AβO-associated synaptic degeneration including cholinergic fiber loss. Taken together, our findings demonstrate that ghrelin can ameliorate AβO-induced cognitive impairment associated with neuroinflammation and neuronal loss. These results suggest that ghrelin may be a promising therapeutic agent for the treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.