As robots are becoming more accessible in our daily lives, the interest in physical human–robot interaction (HRI) is rapidly increasing. An electric bicycle (E-bike) is one of the best examples of HRI, because a rider simultaneously actuates the rear wheel of the E-bike in close proximity. Most commercially available E-bikes employ a control methodology known as a power assistant system (PAS). However, this type of system cannot offer fully efficient power assistance for E-bikes since it does not account for the biomechanics of riders. In order to address this issue, we propose a control algorithm to increase the efficiency and enhance the riding experience of E-bikes by implementing the control parameters acquired from analyses of human leg kinematics and muscular dynamics. To validate the proposed algorithm, we have evaluated and compared the performance of E-bikes in three different conditions: (1) without power assistance, (2) assistance with a PAS algorithm, and (3) assistance with the proposed algorithm. Our algorithm required 5.09% less human energy consumption than the PAS algorithm and 11.01% less energy consumption than a bicycle operated without power assistance. Our algorithm also increased velocity stability by 11.89% and acceleration stability by 27.28%, and decreased jerk by 12.36% in comparison to the PAS algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.