A tuned mass damper (TMD) was developed for mitigating the seismic responses of electrical equipment inside nuclear power plants (NPPs), in particular, the response of an electrical cabinet. A shaking table test was performed, and the frequency and damping ratio were extracted, to confirm the dynamics of the cabinet. Electrical cabinets with and without TMDs were modeled while using SAP2000 software (Version 20, Computers and Structures, NY, USA) that was based on the results. TMDs were designed while using an optimization method and the equations of Den Hartog, Warburton, and Sadek. The numerical models were verified while using the shaking table test results. A sinusoidal sweep wave was applied as input to identify the vibration characteristics of the electrical cabinet over a wide frequency range. Applying various seismic loads that were adjusted to meet the RG 1.60 design response spectrum of 0.3 g then validated the control performance of the TMD. The minimum and maximum response spectrum reduction rates of the designed TMDs were 44.7% and 62.9%, respectively. Further, the amplification factor of the electrical cabinet with the TMD was decreased by 53%, on average, with the proposed optimization method. In conclusion, TMDs can be considered to be an effective way of enhancing the seismic performance of the electrical equipment inside NPPs.
This experimental research investigates the mechanical properties of municipal plastic waste-based particulate composites reinforced with coal ash (CA), the by-product of thermal power plants, for sustainable railway sleepers. Six series of sustainable composites filled with inorganic mineral fillers, including CA, were prepared by a twin-screw extruder and a compression molding machine. The effect of mix design variables—such as filler type, contents and the particle size of the filler—on mechanical properties—including tensile, compression and flexural properties—and morphology were characterized. The scanning electron microscopy (SEM) was employed to examine the morphology of the composites, which revealed the uniform dispersion of fillers in the polymer matrix. The study results conclude that the recycled plastic-based composite with the addition of CA up to 60% is suitable for railway sleeper applications. This experimental study may provide new insight into the railway applications of the developed composites under service loading conditions including traffic loading and earthquake.
This study presents a neuro-control algorithm based on structural modal energy that outputs an optimal control signal to reduce vibration during earthquakes. The modal energy of a structure is used in the objective function during the training process of a neural network. The modal energy and control signal are then minimized by the proposed neuro-control technique. A three-story nonlinear building was installed with an active mass damper, which was used to verify the applicability of the proposed control algorithm. The El Centro earthquake was adopted to train the modal-energy-based neuro-controller. The six recorded earthquakes were employed to consider unknown earthquake effects after training. The results obtained from the proposed control algorithm were compared with those obtained from a non-controlled response and a multilayer perceptron. The numerical results show that the proposed control algorithm is quite effective in reducing the structural response and modal energy. While nonlinear hysteretic behaviors appear in the non-controlled responses, these nonlinear behaviors almost entirely disappear with control.
Repetitive plate-loading test is intended to identify the elastic modulus of a target structure subjected to dynamic loading; such tests are mainly applied to railway roadbeds. The repetitive plate-loading test uses the same equipment as the plate-loading test but different loading methods. The plate-loading test derives the subgrade reaction modulus (k30), while the repetitive plate-loading test derives the strain modulus (Ev2). The former considers the scale effect of the loading-plate size, whereas the latter does not, thereby reducing the reliability of the results. Therefore, numerical analysis was conducted to propose a scale effect that can applied to field tests. First, to verify the 50-mm loading plate, a previous study comparing the results of the 300-mm loading plate in a field test was simulated by a numerical analysis, and the results were compared and analyzed. Next, the strain modulus was investigated according to the loading-plate size under subgrade conditions. An equation to estimate the scale effect applicable to loading plates with diameters of less than 762 mm was derived. The relationship between the calculated strain and elastic moduli was additionally analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.