Tegoprazan, a novel potassium‐competitive acid blocker, is used to treat acid‐related diseases. However, there is no information on the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of the marketed dosage of tegoprazan under various meal timings in a fed and fasted state. The study aimed to assess the effect of meal timing on PKs and PDs of tegoprazan 50 mg after a single administration in healthy male subjects. An open‐label, single‐dose, three‐treatment, three‐period crossover study was conducted. A total of 12 subjects were orally administered a single dose of tegoprazan 50 mg among various conditions: in a fasted state, at 30 min before or 30 min after a high‐fat meal. PK parameters were estimated by the noncompartmental method. Continuous 24‐h intragastric pH monitoring was done for PD analysis. The PKs and PDs of tegoprazan were compared among the various meal timings. Compared with the fasting condition, the PK profile of tegoprazan was similar when administered 30 min before a high‐fat meal; however, delayed absorption with similar systemic exposure was observed when administered 30 min after a high‐fat meal. The magnitude of acid suppression evaluated through the PD parameters increased when administered 30 min after a high‐fat meal compared with fasting the condition and when administered 30 min before a high‐fat meal. However, the increased difference in acid suppression was not clinically significant. Meal timing had no clinically significant effect on the PKs and PDs of tegoprazan 50 mg. Therefore, the marketed dosage of tegoprazan could be administered regardless of the meal timing. WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Tegoprazan, a novel potassium‐competitive acid blocker, is used to treat acid‐related diseases. WHAT QUESTION DID THIS STUDY ADDRESS? This study evaluated the effect of food on pharmacokinetics (PKs) and pharmacodynamics (PDs) of tegoprazan under various mealtime conditions. WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? This study showed that delayed absorption of tegoprazan was observed at “after meal condition,” however, the amount of systemic exposure of “after meal condition” was similar to “fasting condition” and “before meal condition.” In addition, gastric acid suppression of tegoprazan was similar between fasting condition and before meal condition, whereas increased gastric acid suppression was observed at after meal condition. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? In the actual clinical environment, patients take medicine under various fed conditions. This study evaluated the effect of food on PKs and PDs of tegoprazan in various clinical conditions, and provided the important information about meal timing when administering tegoprazan.
This study aimed to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of vutiglabridin, a potential anti‐obesity treatment under development, for the first time in humans. A randomized, placebo‐controlled, single‐ and multiple‐ascending dose study (SAD and MAD, respectively) was performed in healthy Koreans and Whites. Subjects randomly received a single oral dose of 30–720 mg vutiglabridin or placebo at a ratio of 8:2 in the SAD study or 240–480 mg vutiglabridin or placebo once daily for 14 days in the MAD study. Food effect was also evaluated in 240 mg single dose group. Pharmacokinetics were evaluated through plasma concentrations, and pharmacodynamic biomarkers related to obesity or inflammation were analyzed. Safety and tolerability were assessed throughout the study. Single and multiple doses of vutiglabridin were generally well‐tolerated. The pharmacokinetic parameters show less than dose‐proportionality increase, and plasma concentrations increased more than two‐fold after multiple administrations. The mean half‐life of Koreans and Whites in the MAD study was 110 and 73 h, respectively. The systemic exposure of vutiglabridin was significantly increased when taken with a high‐fat meal, and the systemic exposure was lower in Whites than in Koreans. Vutiglabridin was well‐tolerated in healthy Koreans and Whites. The plasma concentration increased less than the dose‐proportionality manner. These results justify further investigation of vutiglabridin in patients with obesity.
This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of tegoprazan and to predict the drug–drug interaction (DDI) potential between tegoprazan and cytochrome P450 (CYP) 3A4 perpetrators. The PBPK model of tegoprazan was developed using SimCYP Simulator® and verified by comparing the model-predicted pharmacokinetics (PKs) of tegoprazan with the observed data from phase 1 clinical studies, including DDI studies. DDIs between tegoprazan and three CYP3A4 perpetrators were predicted by simulating the difference in tegoprazan exposure with and without perpetrators, after multiple dosing for a clinically used dose range. The final PBPK model adequately predicted the biphasic distribution profiles of tegoprazan and DDI between tegoprazan and clarithromycin. All ratios of the predicted-to-observed PK parameters were between 0.5 and 2.0. In DDI simulation, systemic exposure to tegoprazan was expected to increase about threefold when co-administered with the maximum recommended dose of clarithromycin or ketoconazole. Meanwhile, tegoprazan exposure was expected to decrease to ~30% when rifampicin was co-administered. Based on the simulation by the PBPK model, it is suggested that the DDI potential be considered when tegoprazan is used with CYP3A4 perpetrator, as the acid suppression effect of tegoprazan is known to be associated with systemic exposure.
Genetic polymorphisms of enzymes and transporters associated with the absorption, distribution, metabolism, and elimination (ADME) of drugs are one of the major factors that contribute to interindividual variations in drug response. In the present study, we aimed to elucidate the pharmacogenetic profiles of the Korean population using the Affymetrix Drug Metabolizing Enzyme and Transporters (DMET™) platform. A total of 1,012 whole blood samples collected from Korean subjects were genotyped using the DMET™ plus microarray. In total, 1,785 single nucleotide polymorphism (SNP) markers for 231 ADME genes were identified. The genotype and phenotype of 13 clinically important ADME genes implemented in the Clinical Pharmacogenetics Implementation Consortium guidelines were compared among different ethnic groups. Overall, the genotype frequencies of the Korean population were similar to those of the East Asian population. Several genes, notably CYP2C19 and VKORC1 , showed marked differences in Koreans compared to Europeans (EURs) or Africans (AFRs). The percentage of CYP2C19 poor metabolizers was 15% in Koreans and less than 3% in EURs or AFRs. The frequencies of causative SNPs of the VKORC1 gene for the low warfarin dose phenotype were 90%, 60%, and 10% in Koreans, EURs and AFRs, respectively. Our findings can be utilized for optimal pharmacotherapy in Korean patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.