The use of distances based on optimal transportation has recently shown promise for discrimination of power spectra. In particular, spectral estimation methods based on 1 regularization as well as covariance based methods can be shown to be robust with respect to such distances. These transportation distances provide a geometric framework where geodesics corresponds to smooth transition of spectral mass, and have been useful for tracking.In this paper we investigate the use of these distances for automatic target recognition. We study the use of the Monge-Kantorovich distance compared to the standard 2 distance for classifying civilian vehicles based on SAR images. We use a version of the Monge-Kantorovich distance that applies also for the case where the spectra may have different total mass, and we formulate the optimization problem as a minimum flow problem that can be computed using efficient algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.