This article presents two lifetime models that describe two of the most common modes of operation of sensor nodes today, trigger-driven and duty-cycle driven. The models use a set of hardware parameters such as power consumption per task, state transition overheads, and communication cost to compute a node's average lifetime for a given event arrival rate. Through comparison of the two models and a case study from a real camera sensor node design we show how the models can be applied to drive architectural decisions, compute energy budgets and duty-cycles, and to preform side-by-side comparison of different platforms. Based on our models we present a MAT-LAB Wireless Sensor Node Platform Lifetime Prediction and Simulation Package (MATSNL). This demonstrates the use of the models using sample applications drawn from existing sensor node measurements.
We present a method to identify and localize people by leveraging existing CCTV camera infrastructure along with inertial sensors (accelerometer and magnetometer) within each person's mobile phones. Since a person's motion path, as observed by the camera, must match the local motion measurements from their phone, we are able to uniquely identify people with the phones' IDs by detecting the statistical dependence between the phone and camera measurements. For this, we express the problem as consisting of a twomeasurement HMM for each person, with one camera measurement and one phone measurement. Then we use a maximum a posteriori formulation to find the most likely ID assignments. Through sensor fusion, our method largely bypasses the motion correspondence problem from computer vision and is able to track people across large spatial or temporal gaps in sensing. We evaluate the system through simulations and experiments in a real camera network testbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.