The broadly N70°–90°E-trending dykes swarm at Kekem cut across the Paleoproterozoic-to-Achean terranes of West Cameroon remobilized during the Pan-African orogeny. They are picrite basalts and basalts with tholeiitic/transitional affinity, as shown by mineralogical and geochemical data, with variable major and trace element contents, MgO ranges from 7.3 to 12.4 wt.%, Cr from 190 to 411 ppm, Ni from 15 to 234 ppm. All the dykes are light REE enriched with LaN/YbN values of 5.3–8.1, suggesting a co-magmatic origin. They originated from a 2.8% partial melting of a spinel-mantle source with no or little crustal input. The geochemical features of Kekem dykes are similar to those of Paleozoic and Mesozoic dykes recorded in North and Central Africa, suggesting multiple reactivations of pre-existing fractures that resulted in the fragmentation of western Gondwana and the opening of Central and South Atlantic Ocean
In the western Cameroon, crop out several dyke swarms of Paleozoic–Mesozoic age. These dykes intrude the Precambrian basement in the southern continental part of the Cretaceous Cameroon Volcanic Line. In the Njimom area, two groups of mafic dykes that crosscut the Neoproterozoic basement rocks have been observed. A first group intrudes the mylonites whereas the second group intrudes the granites. The dykes are alkaline basalts and hawaiites. The mineralogical assemblage of both groups of dykes consists of plagioclase, clinopyroxene, altered olivine, and opaque oxides. The dykes that cross-cut the Precambrian mylonitic gneisses show moderate TiO2 (1.7–2.0 wt.%), low MgO (4.4–7.1 wt.%), and compatible trace element concentrations (e.g., Cr = 70–180 ppm; Ni = 30–110 ppm). The dykes that intrude the granites have TiO2 contents between 2.3 and 2.5 wt.% and moderate compatible trace element concentrations (e.g., Cr = 260–280 ppm; Ni = 170–230 ppm). MgO varies from 5.9 to 9.2 wt.%. All mafic dykes are enriched in light lanthanide element and show moderate Zr/Nb and high Zr/Y, Nb/Yb, and Ti/V ratios similar to those of average ocean island basalt (OIB)-type magmas. Some dykes that intrude the mylonites show evidence of contamination by continental crust. The composition of the clinopyroxenes of the dykes that intrude the mylonites clearly indicate different and unrelated parental magmas from dykes that intrude the granites. Contents and fractionation of the least and the most incompatible elements suggest low degrees of partial melting (3–5%) of heterogeneous source slightly enriched in incompatible elements in the spinel stability field. The geochemical features of Njimom dykes (in particular the dykes that intrude the granites) are similar to those of Paleozoic and Mesozoic dykes recorded in the southern continental part of the Cameroon Volcanic Line, suggesting multiple reactivations of pre-existing fractures that resulted in the fragmentation of western Gondwana and the opening of the South Atlantic Ocean.
The original version of this paper was published with error. The name of the third author should be BTchaptchet^rather than BTchatptchet^. Given in this article is the corrected author name BDepesquidoux Tchato Tchaptchet^.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.