Focal amplifi cation and activating point mutation of the MET gene are well-characterized oncogenic drivers that confer susceptibility to targeted MET inhibitors. Recurrent somatic splice site alterations at MET exon 14 ( MET ex14) that result in exon skipping and MET activation have been characterized, but their full diversity and prevalence across tumor types are unknown. Here, we report analysis of tumor genomic profi les from 38,028 patients to identify 221 cases with MET ex14 mutations (0.6%), including 126 distinct sequence variants. MET ex14 mutations are detected most frequently in lung adenocarcinoma (3%), but also frequently in other lung neoplasms (2.3%), brain glioma (0.4%), and tumors of unknown primary origin (0.4%). Further in vitro studies demonstrate sensitivity to MET inhibitors in cells harboring MET ex14 alterations. We also report three new patient cases with MET ex14 alterations in lung or histiocytic sarcoma tumors that showed durable response to two different MET-targeted therapies. The diversity of MET ex14 mutations indicates that diagnostic testing via comprehensive genomic profi ling is necessary for detection in a clinical setting. SIGNIFICANCE:Here we report the identifi cation of diverse exon 14 splice site alterations in MET that result in constitutive activity of this receptor and oncogenic transformation in vitro . Patients whose tumors harbored these alterations derived meaningful clinical benefi t from MET inhibitors. Collectively, these data support the role of MET ex14 alterations as drivers of tumorigenesis, and identify a unique subset of patients likely to derive benefi t from MET inhibitors. Cancer Discov; 5(8);
CGP of salivary adenocarcinoma, NOS, SDCs, ca ex PA, and carcinoma, NOS revealed diverse GAs that may lead to novel treatment options. Clin Cancer Res; 22(24); 6061-8. ©2016 AACR.
Background. Esophageal squamous cell carcinomas (ESCCs) and esophageal adenocarcinomas (EACs) account for .95% of esophageal malignancies and represent a major global health burden. ESCC is the dominant histology globally but represents a minority of U.S. cases, with EAC accounting for the majority of U.S. cases.The patient outcomes for advanced ESCC and EAC are poor, and new therapeutic options are needed. Using a sensitive sequencing assay, we compared the genomic profiles of ESCC and EAC with attention to identification of therapeutically relevant genomic alterations. Methods. Next-generation sequencing-based comprehensive genomic profiling was performed on hybridization-captured, adaptor ligation-based libraries to a median coverage depth of .6503 for all coding exons of 315 cancer-related genes plus selected introns from 28 genes frequently rearranged in cancer.Results from a single sample were evaluated for all classes of genomic alterations (GAs) including point mutations, short insertions and deletions, gene amplifications, homozygous deletions, and fusions/rearrangements. Clinically relevant genomic alterations (CRGAs) were defined as alterations linked to approved drugs and those under evaluation in mechanismdriven clinical trials.Results. There were no significant differences by sex for either tumor type, and the median age for all patients was 63 years.
BACKGROUND In the current study, the authors present a comprehensive genomic profile (CGP)‐based study of advanced urothelial carcinoma (UC) designed to detect clinically relevant genomic alterations (CRGAs). METHODS DNA was extracted from 40 µm of formalin‐fixed, paraffin‐embedded sections from 295 consecutive cases of recurrent/metastatic UC. CGP was performed on hybridization‐captured, adaptor ligation‐based libraries to a mean coverage depth of 688X for all coding exons of 236 cancer‐related genes plus 47 introns from 19 genes frequently rearranged in cancer, using process‐matched normal control samples as a reference. CRGAs were defined as GAs linked to drugs on the market or currently under evaluation in mechanism‐driven clinical trials. RESULTS All 295 patients assessed were classified with high‐grade (International Society of Urological Pathology classification) and advanced stage (stage III/IV American Joint Committee on Cancer) disease, and 294 of 295 patients (99.7%) had at least 1 GA on CGP with a mean of 6.4 GAs per UC (61% substitutions/insertions/deletions, 37% copy number alterations, and 2% fusions). Furthermore, 275 patients (93%) had at least 1 CRGA involving 75 individual genes with a mean of 2.6 CRGAs per UC. The most common CRGAs involved cyclin‐dependent kinase inhibitor 2A (CDKN2A) (34%), fibroblast growth factor receptor 3 (FGFR3) (21%), phosphatidylinositol 3‐kinase catalytic subunit alpha (PIK3CA) (20%), and ERBB2 (17%). FGFR3 GAs were diverse types and included 10% fusions. ERBB2 GAs were equally divided between amplifications and substitutions. ERBB2 substitutions were predominantly within the extracellular domain and were highly enriched in patients with micropapillary UC (38% of 32 cases vs 5% of 263 nonmicropapillary UC cases; P<.0001). CONCLUSIONS Using a CGP assay capable of detecting all classes of GA simultaneously, an extraordinarily high frequency of CRGA was identified in a large series of patients with advanced UC. Cancer 2016;122:702–711. © 2015 American Cancer Society.
Inflammatory breast cancer (IBC) is a distinct clinicopathologic entity that carries a worse prognosis relative to non-IBC breast cancer even when matched for standard biomarkers (ER/PR/HER2). The objective of this study was to identify opportunities for benefit from targeted therapy, which are not currently identifiable in the standard workup for advanced breast cancer. Comprehensive genomic profiling on 53 IBC formalin-fixed paraffin-embedded specimens (mean, 800× + coverage) using the hybrid capture-based FoundationOne assay. Academic and community oncology clinics. From a series of 2208 clinical cases of advanced/refractory invasive breast cancers, 53 cases with IBC were identified. The presence of clinically relevant genomic alterations (CRGA) in IBC and responses to targeted therapies. CRGA were defined as genomic alterations (GA) associated with on label targeted therapies and targeted therapies in mechanism-driven clinical trials. For the 44 IBCs with available biomarker data, 19 (39 %) were ER-/PR-/HER2- (triple-negative breast cancer, TNBC). For patients in which the clinical HER2 status was known, 11 (25 %) were HER2+ with complete (100 %) concordance with ERBB2 (HER2) amplification detected by the CGP assay. The 53 sequenced IBC cases harbored a total of 266 GA with an average of 5.0 GA/tumor (range 1-15). At least one alteration associated with an FDA approved therapy or clinical trial was identified in 51/53 (96 %) of cases with an average of 2.6 CRGA/case. The most frequently altered genes were TP53 (62 %), MYC (32 %), PIK3CA (28 %), ERBB2 (26 %), FGFR1 (17 %), BRCA2 (15 %), and PTEN (15 %). In the TNBC subset of IBC, 8/19 (42 %) showed MYC amplification (median copy number 8X, range 7-20) as compared to 9/32 (28 %) in non-TNBC IBC (median copy number 7X, range 6-21). Comprehensive genomic profiling uncovered a high frequency of GA in IBC with 96 % of cases harboring at least 1 CRGA. The clinical benefit of selected targeted therapies in individual IBC cases suggests that a further study of CGP in IBC is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.