Low salinity is one of the most important abiotic factors that directly affect the abundance of the swimming crab, Portunus trituberculatus. Quantitative trait loci (QTL) mapping could be helpful in identifying the markers and genes involved in low salinity tolerance. In this study, two QTLs of low salt tolerance were mapped on linkage group 17 (LG17, 2.6–5.2 cM) based on a high-density linkage map. Ninety-five markers related to low salinity tolerance were identified via association analysis, and seventy-nine low salt-related candidate genes (including ammonium transport, aldehyde dehydrogenase, and glucosyltransferase) were screened from draft genome of the species via these markers. This represents the first report of QTL mapping for low salinity tolerance in the swimming crab, which may be useful to elucidate salinity adaptation mechanisms.
Portunus trituberculatus (Crustacea: Decapoda: Brachyura), commonly known as the swimming crab, is of major ecological importance, as well as being important to the fisheries industry. P. trituberculatus is also an important farmed species in China due to its rapid growth rate and high economic value. Here, we report the genome sequence of the swimming crab, which was assembled at the chromosome scale, covering˜1.2 Gb, with 79.99% of the scaffold sequences assembled into 53 chromosomes. The contig and scaffold N50 values were 108.7 kb and 15.6 Mb, respectively, with 19,981 protein-coding genes and a high proportion of simple sequence repeats (49.43%). Based on comparative genomic analyses of crabs and shrimps, the C2H2 zinc finger protein family was found to be the only gene family expanded in crab genomes, and its members were mainly expressed in early embryonic development and during the flea-like larval stage, suggested it was closely related to the evolution of crabs. Combined with transcriptome and Bulked Segregant Analysis (BSA) providing insights into the genetic basis of salinity adaptation in P. trituberculatus, strong immunity and rapid growth of the species were also observed. In addition, the specific region of the Y chromosome was located for the first time in the genome of P. trituberculatus, and Dmrt1 was identified as a key sex determination gene in this region. Decoding the swimming crab genome not only provides a valuable genomic resource for further biological and evolutionary studies, but is also useful for molecular breeding of swimming crabs. A chromosome-level genome of Portunus trituberculatus provides insights into its evolution, salinity adaptation, and sex determination
Portunus trituberculatus (Crustacea: Decapoda: Brachyura), commonly known as the swimming crab, is of major ecological importance, as well as being important to the fisheries industry. P. trituberculatus is also an important farmed species in China due to its rapid growth rate and high economic value. Here, we report the genome sequence of the swimming crab, which was assembled at the chromosome scale, covering ~1.2 Gb, with 79.99% of the scaffold sequences assembled into 53 chromosomes. The contig and scaffold N50 values were 108.7 kb and 15.6 Mb, respectively, with 19,981 protein‐coding genes. Based on comparative genomic analyses of crabs and shrimps, the C2H2 zinc finger protein family was found to be the only gene family expanded in crab genomes, suggesting it was closely related to the evolution of crabs. The combination of transcriptome and bulked segregant analysis provided insights into the genetic basis of salinity adaptation and rapid growth in P. trituberculatus. In addition, the specific region of the Y chromosome was located for the first time in the genome of P. trituberculatus, and three genes were preliminarily identified as candidate genes for sex determination in this region. Decoding the swimming crab genome not only provides a valuable genomic resource for further biological and evolutionary studies, but is also useful for molecular breeding of swimming crabs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.