Topoisomerase II-binding protein (TopBP1), a human protein with eight BRCT domains, is similar to Saccharomyces cerevisiae Dpb11 and Schizosaccharomyces pombe Cut5 checkpoint proteins and closely related to Drosophila Mus101. We show that human TopBP1 is required for DNA replication and that it interacts with DNA polymerase ⑀. In S phase TopBP1 colocalizes with Brca1 to foci that do not represent sites of ongoing DNA replication. Inhibition of DNA synthesis leads to relocalization of TopBP1 together with Brca1 to replication forks, suggesting a role in rescue of stalled forks. DNA damage induces formation of distinct TopBP1 foci that colocalize with Brca1 in S phase, but not in G 1 phase. We also show that TopBP1 interacts with the checkpoint protein hRad9. Thus, these results implicate TopBP1 in replication and checkpoint functions. DNA polymerases (pol)1 play essential roles in chromosomal DNA replication and repair. In Saccharomyces cerevisiae three essential nuclear polymerases, ␣, ␦, and ⑀ have important functions in DNA replication. S. cerevisiae pol ⑀ is isolated as a complex of a catalytic subunit and three smaller subunits, Dpb2, 3, and 4 (1). This four-subunit structure is also conserved in the human enzyme, which consists of a catalytic subunit (2), a B subunit (3, 4), and two smaller subunits (5). Pol ⑀ is a proofreading DNA polymerase, which has been implicated in DNA replication, as temperature-sensitive mutants show defects in DNA replication in both S. cerevisiae and Schizosaccharomyces pombe (6 -8). Moreover, pol ⑀ is associated with origins of DNA replication and it proceeds along the replication fork (9). In human cells, pol ⑀ is associated with actively replicated cellular DNA (10) and has been shown to perform an important fraction of replicative DNA synthesis (11). Surprisingly, the catalytic domain of pol ⑀ is not essential for viability in S. cerevisiae. Instead, the C terminus, which interacts with Dpb2, exerts all of the essential functions (12).Pol ⑀ has been proposed to function in the repair of UVdamaged DNA because it is able to catalyze UV-induced DNA synthesis in vivo (13) and performs efficient gap-filling synthesis in the reconstituted nucleotide excision repair system (14). A role in base excision repair is suggested by the fact that pol ⑀ mutants fail to support repair synthesis in vitro, and repair activity can be restored by the addition of purified pol ⑀ (15). Pol ⑀ has also been proposed to function in a specialized replication process required to repair double strand breaks (16). In addition to replicative and repair roles, it has been suggested that pol ⑀ coordinates transcriptional and cell cycle responses to DNA damage and replication blocks (17).In S. cerevisiae, a BRCT domain-containing protein, Dpb11, interacts with the pol ⑀ complex and was originally identified as a suppressor of pol ⑀ catalytic and Dpb2 subunit mutants (18,19). DPB11 is an essential gene required for DNA replication (18). The inability of DPB11 mutants to restrain mitosis in the presence of inco...
Collapsin response mediator proteins (CRMPs) mediate growth cone collapse during development, but their roles in adult brains are not clear. Here we report the findings that the full-length CRMP-3 (p63) is a direct target of calpain that cleaves CRMP-3 at the N terminus (ϩ76 amino acid). Interestingly, activated calpain in response to excitotoxicity in vitro and cerebral ischemia in vivo also cleaved CRMP-3, and the cleavage product of CRMP-3 (p54) underwent nuclear translocation during neuronal death. The expression of p54 was colocalized with the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive nuclei in glutamatetreated cerebellar granule neurons (CGNs) and in ischemic neurons located in the infarct core after focal cerebral ischemia, suggesting that p54 might be involved in neuronal death. Overexpression studies showed that p54, but not p63, caused death of human embryonic kidney cells and CGNs, whereas knock-down CRMP-3 expression by selective small interfering RNA protected neurons against glutamate toxicity. Collectively, these results reveal a novel role of CRMP-3 in that calpain cleavage of CRMP-3 and the subsequent nuclear translocation of the truncated CRMP-3 evokes neuronal death in response to excitotoxicity and cerebral ischemia. Our findings also establish a novel route of how calpain signals neuron death.
The B-subunits of replicative DNA polymerases from Archaea to humans belong to the same protein family, suggesting that they share a common fundamental function. We report here the gene structure for the B-subunit of human DNA polymerase epsilon (POLE2), whose expression and transcriptional regulation is typical for replication proteins with some unique features. The 75 bp core promoter region, located within exon 1, contains an Sp1 element that is a critical determinant of promoter activity as shown by the luciferase reporter, electrophoretic mobility shift and DNase I footprinting assays. Two overlapping E2F elements adjacent to the Sp1 element are essential for full promoter activity and serum response. Binding sites for E2F1 and NF-1 reside immediately downstream from the core promoter region. Our results suggest that human POLE2 is regulated by two E2F-pocket protein complexes, one associated with Sp1 and the other with NF-1. So far, only one replicative DNA polymerase B-subunit gene promoter, POLA2 encoding the B-subunit of DNA polymerase alpha, has been characterized. Mitogenic activation of the POLE2 promoter by an E2F-mediated mechanism resembles that of POLA2, but the regulation of basal promoter activity is different between these two genes.
Selective gene expression in neurons is still a challenge. We have developed several expression vectors using a combination of neuron restrictive silencer elements (NRSEs), hypoxia responsive elements (HREs) and CMV minimal promoter (CMVmp). These elements were packaged into replication defective adenovirus to target gene expression selectively in neurons in a hypoxia-regulated manner. Neuronal selectivity and responsiveness to hypoxia of these novel constructs were determined empirically in both neural cell lines and primary cerebellar granule neurons (CGNs). The construct p5HRE-3NRSE exhibited not only the highest level of reporter gene expression in neuronal cells but also in an oxygen concentration-dependent manner when compared with all other constructs. As expected, this construct did not elicit reporter gene expression in non-neuronal cells including human HEK293A and HT29 cells, rat NRK cells, mouse 3T6 cells and 3T3 L1 cells. This construct was packaged into a replication defective adenoviral vector (Ad/5HRE-3NRSE) to determine neuron-selective and hypoxia-inducible gene expression in cultured mouse postmitotic primary CGNs and differentiated human NT2 neurons (NT2/Ns). Remarkably, in response to hypoxia, Ad/5HRE-3NRSE showed strong hypoxia-inducible gene expression selectively in neurons (12-fold induction in CGNs and 22-fold in NT2/Ns), but not in glial cells. Taken together, this vector with restricted gene expression to neurons under the regulation of hypoxia will be a useful tool for investigations of mechanisms of neuronal damage caused by ischemic insult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.