Time series prediction with deep learning methods, especially long short-term memory neural networks (LSTMs), have scored significant achievements in recent years. Despite the fact that the LSTMs can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to the LSTMs model. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods.
Bike-sharing systems, aiming at meeting the public’s need for ”last mile” transportation, are becoming popular in recent years. With an accurate demand prediction model, shared bikes, though with a limited amount, can be effectively utilized whenever and wherever there are travel demands. Despite that some deep learning methods, especially long shortterm memory neural networks (LSTMs), can improve the performance of traditional demand prediction methods only based on temporal representation, such improvement is limited due to a lack of mining complex spatial-temporal relations. To address this issue, we proposed a novel model named STG2Vec to learn the representation from heterogeneous spatial-temporal graph. Specifically, we developed an event-flow serializing method to encode the evolution of dynamic heterogeneous graph into a special language pattern such as word sequence in a corpus. Furthermore, a dynamic attention-based graph embedding model is introduced to obtain an importance-awareness vectorized representation of the event flow. Additionally, together with other multi-source information such as geographical position, historical transition patterns and weather, e.g., the representation learned by STG2Vec can be fed into the LSTMs for temporal modeling. Experimental results from Citi-Bike electronic usage records dataset in New York City have illustrated that the proposed model can achieve competitive prediction performance compared with its variants and other baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.