The modelling problem of nonlinear control system is studied, and a higher generality nonlinear U model is established. Based on the nonlinear U model, RBF neural network and PD parallel control algorithm are proposed. The difference between the control input value and the output value of the neural network is taken as the learning target by using the online learning ability of the neural network. The gradient descent method is used to adjust the PD output value, and ultimately track the ideal output. The Newton iterative algorithm is used to complete the transformation of the nonlinear model, and the nonlinear characteristic of the plant is reduced without loss of modelling precision, consequently, the control performance of the system is improved. The simulation results show that RBF neural network and PD parallel control system can control the nonlinear system. Moreover, the control system with Newton iteration can improve the control effect and anti-interference performance of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.