Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension.
Many aspects in tissue morphogenesis are attributed to the collective behavior of the participating cells. Yet, the mechanism for emergence of dynamic tissue behavior is not understood completely. Here we report the "yoyo"-like nuclear drift movement in Drosophila syncytial embryo displays typical emergent feature of collective behavior, which is associated with pseudosynchronous nuclear division cycle. We uncover the direct correlation between the degree of asynchrony of mitosis and the nuclear collective movement. Based on experimental manipulations and numerical simulations, we find the ensemble of spindle elongation, rather than a nucleus' own spindle, is the main driving force for its drift movement. The cortical F-actin acts as viscoelastic medium to dampen the movements and plays a critical role in restoring the nuclear positions after a mitosis cycle. Our study provides insights into how the interactions between cytoskeleton as individual elements leads to collective movement of the nuclear array on a macroscopic scale.
The majority of membrane and secreted proteins, including many developmentally important signalling proteins, receptors and adhesion molecules, are cotranslationally N-glycosylated in the endoplasmic reticulum. The structure of the N-glycan is invariant for all substrates and conserved in eukaryotes. Correspondingly, the enzymes are conserved, which successively assemble the glycan precursor from activated monosaccharides prior to transfer to nascent proteins. Despite the well-defined biochemistry, the physiological and developmental role of N-glycosylation and of the responsible enzymes has not been much investigated in metazoa. We identified a mutation in the Drosophila gene, xiantuan (xit, CG4542), which encodes one of the conserved enzymes involved in addition of the terminal glucose residues to the glycan precursor. xit is required for timely apical constriction of mesoderm precursor cells and ventral furrow formation in early embryogenesis. Furthermore, cell intercalation in the lateral epidermis during germband extension is impaired in xit mutants. xit affects glycosylation and intracellular distribution of E-Cadherin, albeit not the total amount of E-Cadherin protein. As depletion of E-Cadherin by RNAi induces a similar cell intercalation defect, E-Cadherin may be the major xit target that is functionally relevant for germband extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.