Sweat pH monitoring is a routine indicator in wearable biotechnology. The state-of-the-art wearable pH sensors mostly rely on organic materials but face the risk of biological toxicity. WO 3 is a typical H + -sensitive inorganic material with chemical stability, biocompatibility, and low cost but low sensitivity and slow response. Lattice H + intercalation is herein proposed as an efficient approach that can greatly improve the sensitivity and selectivity of WO 3based pH sensors. Specifically, lattice H + intercalation can promote WO 3 from the monoclinic phase to cubic phase, which enhances the ion exchange capacity between WO 3 and H + . The resistance decreases more than two orders of magnitudes, which improves the interfacial charge transport. The occupancy of lattice H + leads to ion exchange only with H + , thus increasing the H + recognition. The intercalated H x WO 3 exhibits much improved sensitivity, reversibility, and response time. Additionally, the H x WO 3 is integrated with a solid reference electrode on a miniaturized chip for wearable sweat pH monitoring. The pH sensor exhibits good potential response even at curving over 270°. On-body sweat pH measurments show high accuracy compared with ex situ analyses. This work emphasizes the concept of lattice proton intercalation to regulate the H + recognition of solid contacts.
Creating nanosized pores in layered materials can increase the abundant active surface area and boost potential applications of energy storage devices. Herein, a unique synthetic strategy based on polyaniline (PANI) doped 2D cobalt-iron layered double hydroxide (CoFe-LDH/P) nanomaterials are designed, and the formation of pores at low temperature (80 °C) is developed. It is found that the optimized concentration of PANI creates the nanopores on the CoFe-LDH nanosheets among all other polymers. The well-ordered pores of CoFe-LDH/P allow the high accessibility of the redox-active sites and promote effective ion diffusion. The optimized CoFe-LDH/P2 cathode reveals a specific capacitance 1686 (1096 Cg −1 ) and 1200 Fg −1 (720 Cg −1 ) at 1 and 30 Ag −1 respectively, a high rate capability (71.2%), and a long cycle life (98% over 10 000 cycles) for supercapacitor applications. Charge storage analysis suggests that the CoFe-LDH/P2 electrode displays a capacitive-type storage mechanism (69% capacitive at 1 mV s −1 ). Moreover, an asymmetric aqueous supercapacitor (CoFe-LDH/P2//AC) is fabricated, delivering excellent energy density (75.9 Wh kg −1 at 1124 W kg −1 ) with outstanding stability (97.5%) over 10 000 cycles. This work opens a new avenue for designing porous 2D materials at low temperature for aqueous energy storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.