The fuzzy matrix equationsA~⊗X~⊗B~=C~in whichA~,B~, andC~arem×m,n×n, andm×nnonnegative LR fuzzy numbers matrices, respectively, are investigated. The fuzzy matrix systems is extended into three crisp systems of linear matrix equations according to arithmetic operations of LR fuzzy numbers. Based on pseudoinverse of matrix, the fuzzy approximate solution of original fuzzy systems is obtained by solving the crisp linear matrix systems. In addition, the existence condition of nonnegative fuzzy solution is discussed. Two examples are calculated to illustrate the proposed method.
In this paper, approximate solutions of second-order linear differential equations with fuzzy boundary conditions, in which coefficient functions maintain the sign, are investigated. The fuzzy linear boundary value problem is converted to a crisp function system of linear equations by the undetermined fuzzy coefficients method. The fuzzy approximate solution of the fuzzy linear differential equation is obtained by solving the crisp linear equations. Some numerical examples are given to illustrate the proposed method.
A predictor-corrector algorithm and an improved predictor-corrector (IPC) algorithm based on Adams method are proposed to solve first-order differential equations with fuzzy initial condition. These algorithms are generated by updating the Adams predictor-corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.
The fuzzy symmetric solution of fuzzy matrix equation A X = B, in which A is a crisp m × m nonsingular matrix and B is an m × n fuzzy numbers matrix with nonzero spreads, is investigated. The fuzzy matrix equation is converted to a fuzzy system of linear equations according to the Kronecker product of matrices. From solving the fuzzy linear system, three types of fuzzy symmetric solutions of the fuzzy matrix equation are derived. Finally, two examples are given to illustrate the proposed method.
The fuzzy Sylvester matrix equationAX~+X~B=C~in whichA,Barem×mandn×ncrisp matrices, respectively, andC~is anm×nLR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.