Using PCR with a set of specific oligonucleotide primers to detect cryI-type genes, we were able to screen the cry-type genes of 225 BaciUlus thuringiensis soil isolates from Taiwan without much cost in time or labor. Some combinations of cry genes (the cry-type profile) in a single isolate were unique. We identified five distinct profiles of crystal genes from the B. thuringiensis soil isolates from Taiwan. The cry genes included cryL4(a), cryIA(b), crylA(c), cryIC, cryID, and cryIV. Interestingly, 501 B. thuringiensis isolates (93.5% of the total number that we identified) were isolated from areas at high altitudes. The profiles of cry-type genes were distinct in all isolation areas. The distribution of cry-type genes of our isolates therefore depended on geography. Using PCR footprinting to detect cryIC-type genes, we identified two distinct cryIC footprints from some of our isolates, indicating that these isolates may contain novel cryIC-type genes. B. thuringiensis isolates containing cryIA(a)-, cryL4(b)-, and cryL4(c)-type genes exhibited much greater activity against Plutella xylostella than did other isolates, indicating that multiple cry-type genes may be used as markers for the prediction of insecticidal activities.
A DNA fragment containing the recA gene of Gluconobacter oxydans was isolated and further characterized for its nucleotide sequence and ability to functionally complement various recA mutations. When expressed in an Escherichia coli recA host, the G. oxydans recA protein could efficiently function in homologous recombination and DNA damage repair. The recA gene's nucleotide sequence analysis revealed a protein of 344 amino acids with a molecular mass of 38 kDa. We observed an E. coli-like LexA repressor-binding site in the G. oxydans recA gene promoter region, suggesting that a LexA-like mediated response system may exist in G. oxydans. The expression of G. oxydans recA in E. coli RR1, a recA+ strain, surprisingly caused a remarkable reduction of the host wild-type recA gene function, whereas the expression of both Serratia marcescens recA and Pseudomonas aeruginosa recA gene caused only a slight inhibitory effect on function of the host wild-type recA gene product. Compared with the E. coli RecA protein, the identity of the amino acid sequence of G. oxydans RecA protein is much lower than those RecA proteins of both S. marcescens and Pseudomonas aeruginosa. This result suggests that the expression of another wild-type RecA could interfere with host wild-type recA gene's function, and the extent of such an interference is possibly correlated to the identity of the amino acid sequence between the two classes of RecA protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.