BackgroundPenaeus monodon nudivirus (PmNV) is the causative agent of spherical baculovirosis in shrimp (Penaeus monodon). This disease causes significant mortalities at the larval stage and early postlarval (PL) stage and may suppress growth and reduce survival and production in aquaculture. The nomenclature and classification status of PmNV has been changed several times due to morphological observation and phylogenetic analysis of its partial genome sequence. In this study, we therefore completed the genome sequence and constructed phylogenetic trees to clarify PmNV’s taxonomic position. To better understand the characteristics of the occlusion bodies formed by this marine occluded virus, we also compared the chemical properties of the polyhedrin produced by PmNV and the baculovirus AcMNPV (Autographa californica nucleopolyhedrovirus).ResultsWe used next generation sequencing and traditional PCR methods to obtain the complete PmNV genome sequence of 119,638 bp encoding 115 putative ORFs. Phylogenetic tree analysis showed that several PmNV genes and sequences clustered with the non-occluded nudiviruses and not with the baculoviruses. We also investigated the characteristics of PmNV polyhedrin, which is a functionally important protein and the major component of the viral OBs (occlusion bodies). We found that both recombinant PmNV polyhedrin and wild-type PmNV OBs were sensitive to acid conditions, but unlike the baculoviral OBs, they were not susceptible to alkali treatment.ConclusionsFrom the viral genome features and phylogenetic analysis we conclude that PmNV is not a baculovirus, and that it should be assigned to the proposed Nudiviridae family with the other nudiviruses, but into a distinct new genus (Gammanudivirus).Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-628) contains supplementary material, which is available to authorized users.
White spot syndrome virus (WSSV) is the causative agent of a shrimp disease that has caused huge global economic losses. Although its pathogenesis remains poorly understood, it has been reported that in the shrimp immune cells (hemocytes) targeted by WSSV, the virus triggers both the Warburg effect and glutamine metabolism at the WSSV genome replication stage (12 h post infection). Glutamine metabolism follows two pathways: an oxidative pathway mediated by α-KGDH (α-ketoglutarate dehydrogenase) and an alternative reductive pathway mediated by IDH1 and IDH2 (isocitrate dehydrogenase 1 and 2). Here we used isotopically labeled glutamine ([U-13C]glutamine and [1-13C]glutamine) as metabolic tracers to show that, at the replication stage, both the oxidative and reductive glutamine metabolic pathways were activated. We further show that the mRNA expression levels of α-KGDH and IDH1 were increased in WSSV-infected shrimps and that silencing of α-KGDH, IDH1, and IDH2 with their respective dsRNAs led to a decrease in WSSV gene expression and WSSV replication. Taken together, our findings provide new evidence for WSSV-induced metabolic reprogramming in hemocytes and demonstrate its importance in virus replication.
Neuropathic pain caused by peripheral tissue injuries to the higher brain regions still has no satisfactory therapy. Disruption of the balance of excitatory and inhibitory neurotransmitters is one of the underlying mechanisms that results in chronic neuropathic pain. Targeting neurotransmitters and related receptors may constitute a novel approach for treating neuropathic pain. We investigated the effects of electroacupuncture (EA) on chronic constriction injury- (CCI-) induced neuropathic pain. The mechanical allodynia and thermal hyperalgesia pain behaviors were relieved by 15 Hz EA but not by 2 and 50 Hz. These phenomena were associated with increasing γ-amino-butyric acid (GABA) receptors in the hippocampus and periaqueductal gray (PAG) but not N-methyl-D-aspartate receptors. Furthermore, excitatory neurotransmitter glutamate was decreased in the hippocampus and inhibitory neurotransmitter GABA was increased in the PAG under treatment with EA. These data provide novel evidence that EA modulates neurotransmitters and related receptors to reduce neuropathic pain in the higher brain regions. This suggests that EA may be a useful therapy option for treating neuropathic pain.
The enteric pathogen enterohemorrhagic Escherichia coli (EHEC) is responsible for outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) worldwide. Several molecular mechanisms have been described for the pathogenicity of EHEC; however, the role of bacterial metabolism in the virulence of EHEC during infection in vivo remains unclear. Here we show that aerobic metabolism plays an important role in the regulation of EHEC virulence in Caenorhabditis elegans. Our functional genomic analyses showed that disruption of the genes encoding the succinate dehydrogenase complex (Sdh) of EHEC, including the sdhA gene, attenuated its toxicity toward C. elegans animals. Sdh converts succinate to fumarate and links the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC) simultaneously. Succinate accumulation and fumarate depletion in the EHEC sdhA mutant cells were also demonstrated to be concomitant by metabolomic analyses. Moreover, fumarate replenishment to the sdhA mutant significantly increased its virulence toward C. elegans. These results suggest that the TCA cycle, ETC, and alteration in metabolome all account for the attenuated toxicity of the sdhA mutant, and Sdh catabolite fumarate in particular plays a critical role in the regulation of EHEC virulence. In addition, we identified the tryptophanase (TnaA) as a downstream virulence determinant of SdhA using a label-free proteomic method. We demonstrated that expression of tnaA is regulated by fumarate in EHEC. Taken together, our multi-omic analyses demonstrate that sdhA is required for the virulence of EHEC, and aerobic metabolism plays important roles in the pathogenicity of EHEC infection in C. elegans. Moreover, our study highlights the potential targeting of SdhA, if druggable, as alternative preventive or therapeutic strategies by which to combat EHEC infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.