Cassava is a significant contributor to food security and an income source for smallholder farmers in southern Ethiopia. However, little research effort has been done so far based on designing field experiment samples for the biochemical composition of cassava accession at the country level. The study was conducted to assess the biochemical composition of cassava accessions in southwest Ethiopia. Flour samples from the storage roots of 64 cassava accessions were collected and were run in duplicates. Data on 13 biochemical characters were collected and analyzed using standard methods. The analysis of variance showed significant to very highly significant differences among the tested accessions for biochemical composition. The flour moisture ranged from 4.83–10.11%, dry matter (89.89-95.17%), organic matter (86.71–92.65%), ash (2.1–3.96%), fiber (1.14–3.00%), fat (0.26-1.4%), crude protein (1.28-2.86%), starch (65.1–74.2%), carbohydrate (81.29–87.94%), energy (341.44–367.61 kcal/100g DM), and cyanide (1.67–3.14). The highest GCV = 29.54% was shown for crude fat, followed by GCV = 16.94% for crude fiber, and GCV = 16.11% for tannin, whereas, among the characters, dry matter was observed to be the lowest (GCV = 0.84%). The GAM ranged from protein 0.30% to 54.94% for fat, while heritability ranged from flour moisture and dry matter (17.29%) to 84.88% for cyanide. The first five principal components explained 80.1% of the total variation, with PC I accounting for 37%, PC II 15.4%, PC III 11.6%, PC IV 8.4%, and PC V 8.20% of the total variation. This study found the presence of high biochemical variability among the tested accessions’ roots and could be used to select accessions with desirable biochemical composition in future breeding work.
Cassava (Manihot esculenta Crantz) is a staple food and generates income for smallholder farmers in southern Ethiopia. The performance of cassava genotypes varies in different growing environments; thus, the evaluation of genotypes tested in various environments plays an essential role in developing strategies to delineate environments, explore unstable genotypes in target environments, and identify stable genotypes for multiple environments. In this regard, there needs to be more information on the identification of mega-environments and stable genotypes with high yields for wide adaptation. Thus, this study aimed to identify mega-environment and high-yielding cassava genotypes for multiple environments using AMMI and GGE biplots. A total of 25 genotypes were evaluated in six environments using a RCBD during the 2020–2021 cropping season. The AMMI analysis of variances revealed that environments, genotypes, and genotype-environment interaction had a significant ( P ≤ 0.001 ) influence on cassava fresh storage root yield (t·ha−1), showing genetic variability among genotypes by changing environments. The genotype-by-environment interaction showed a 61.36% contribution to the total treatment SS variation, while the environment and genotype effects explained 28.16% and 10.48% of the total treatment SS, respectively. IPCA1 and IPCA2 accounted for 33.42% and 23.5% of the GE interactions SS, respectively. The GGE biplot showed that the six environments used in this study were delineated into three mega-environments, namely, the first (Tarcha and Disa), the second (Wara and Areka), and the third (Jimma and Bonbe). Those mega-environments could be helpful for genotype evaluation and effective breeding. The GGE biplot indicated that the vertex genotypes were G16, G17, and G25. They are regarded as specifically adapted genotypes since they are more responsive to environmental change. The GGE biplot also revealed that Tarcha was ideal, having the most discriminating and representative environment, while G10 was the ideal and the overall winning genotype for the current study. Moreover, the genotypes G10 and G14 were identified as being the most stable, with a higher fresh storage root yield than the grand mean. Thus, G10 and G14 were selected as superior genotypes that could be promoted to advanced yield trials to develop stable cultivars with better storage root yield of cassava.
The effect of banana treatment with traditional kerosene smoking and ethrel released ethylene were investigated to determine their efficacy on ripening, shelf life and physicochemical quality attributes. Fruits at full maturity stage that are light green and three quarter full were used. The study was consisted of three factors namely ripening techniques (conventional kerosene smoking and Ethrel), exposure times (that is, 18, 24 and 30 h), and cultivars (Williams I, Poyo and Giant Cavendish). Fruits were conventionally treated with kerosene smoke released from kerosene burners and ethylene released from 10 ml of ethrel solution (2-chloro ethyl phosphonic acid). They were equally treated under airtight conditions over three sets of exposure times inside locally standard 3 m × 2 m × 3 m sized six separate commercial banana ripening chambers. Fruits were then sequentially withdrawn from the chambers on the basis of their respective exposure times and studied under ambient conditions (23±1°C and 73±1% RH). All parameters tested were invariably and progressively affected by treatment combinations over the experimental period. Significant differences (p ≤ 0.05) in mean values were also recorded in all parameters at different stages of the ripening period. A three way significant (p ≤ 0.05) interaction effect of the three factors was revealed on the 7 th day of the ripening period on the major quality parameters, starch, TSS, and TSS/TA. Sensory quality evaluation results conducted on the 7 th day of the ripening period also showed a similarly highly significant interaction effect among the treatment factors on all quality attributes tested. Ethrel treated fruits demonstrated higher sensory quality mean score values in color (3.85), flavor (3.89), taste (3.80), aroma (3.66) and total acceptability (3.67), other than mouth-feel (3.37) and degree of ripening (3.49). Fruits treated with all treatment combinations of the kerosene smoking system equally completed their maximum ripening stage on the 7 th day of the ripening period. However, at this stage, fruits were found developing some off ripening effect black scars on the peel in addition to the relatively low quality attributes recorded upon them through the sensory evaluation panel. Fruits treated with ethrel completed their ripening stage on the 7 th day only at the exposure time of 30 h. Those exposed to 18 and 24 h exposure times took more time and extended their ripening stage to up to the 11 th day. Thus, in terms of ripening efficiency, the kerosene smoking system can be used at the lowest exposure time of 18 h under the conditions tested. The ethrel-based ripening system can similarly be used for equal ripening efficiency and better sensory quality attributes but only at the highest exposure time of 30 h.
Cassava (Manihot esculenta Crantz) is mainly produced to supplement food security by providing food for smallholder farmers year round. However, its production is constrained by various factors. Thus, the aim of this research was to assess cassava utilization patterns, postharvest handling practices, and the factors that influence productivity. Data were gathered from primary and secondary sources, and a multistage sampling procedure was used to select 200 HHs. A multiple regression model and descriptive statistics were used to analyze the data. The regression model revealed that the education level, family size, land holding size, cropping system, crop rotation, earthing up rate, maturity, variety type, training, and plant population variables were significantly and positively correlated with cassava productivity. This implies that if any of these variables increases, cassava productivity will increase while the other variables remain constant. Topography and pest variables showed a significant negative correlation, indicating that an undulating topography or being attacked by pests could reduce cassava productivity by 60.00%. The descriptive statistics results for the utilization proportion showed that 51.87% of the farmers utilized for home consumption, 43.68% for the market, and 4.26% for animal feed. The consumption pattern indicated that 46.50% was boiled roots, 15.00% was flour cooked, and 38.50% was boiled roots and flour cooked. As postharvest handling practices showed, 10.00% of the farmers immediately processed to powder, 18.00% immediately processed to sliced (chips), 61.00% left them to root in the soil, and 11.00% did nothing. This indicates that the farmers’ consumption patterns and processing methods are very traditional. Therefore, the study suggested that the farmers’ different practices should be further supported by research through the generation of multiple food forms, postharvest handling practices, and production technology. Proper attention should also be given to address the identified productivity-influencing factors as well as postharvest handling practices. These could sustain the farming system of the crop and help to increase cassava productivity for smallholder farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.