High-Intensity Functional Training (HIFT) is a novel exercise intervention that may test body systems in a balanced and integrated fashion by challenging individuals’ abilities to complete mechanical work. However, research has not previously determined if physical work capacity is unique to traditional physiologic measures of fitness. Twenty-five healthy men and women completed a six-week HIFT intervention with physical work capacity and various physiologic measures of fitness assessed pre- and post-intervention. At baseline, these physiologic measures of fitness (e.g., aerobic capacity) were significantly associated with physical work capacity and this relationship was even stronger at post-intervention assessment. Further, there were significant improvements across these physiologic measures in response to the delivered intervention. However, the change in these physiologic measures failed to predict the change in physical work capacity induced via HIFT. These findings point to the potential utility of HIFT as a unique challenge to individuals’ physiology beyond traditional resistance or aerobic training. Elucidating the translational impact of increasing work capacity via HIFT may be of great interest to health and fitness practitioners ranging from strength/conditioning coaches to physical therapists.
The session rate of perceived exertion method (sRPE) has often been utilized in sports activities in which quantification of external training loads is challenging. The multi-modal, constantly varied nature of high intensity functional training (HIFT) represents a significant hurdle to calculate external work and the sRPE method may provide an elegant solution to this problem. However, no studies have investigated the psychometric properties of sRPE within HIFT interventions. Twenty-five healthy men and women participated in six weeks of HIFT. Rate of perceived exertion and heart rate were assessed within every training session throughout the duration of the intervention. Compared to criterion heart rate-based measures, we observed sRPE method is a valid tool across individual, group, and sex levels. However, poor reliability in participants’ abilities to correctly match rate of perceived exertion with the relative level of physiologic effort (i.e., percentile of maximum heart rate) currently limits the utility of this strategy within HIFT. When applied, the validity and reliability of the sRPE seem to improve over time, and future research should continue to explore the potential of this monitoring strategy within HIFT interventions.
While short-term high intensity functional training (HIFT) effects have been established, fitness improvements from program participation exceeding 16 weeks are unknown. This study examined the effectiveness of participation in HIFT through CrossFit. During 2013–2014, fitness performance testing was incorporated into an ongoing university CrossFit program. Participants included 45 adults (23 women, 22 men) with 0–27 months of HIFT experience (grouped into 0–6 months and 7+ months). Participants completed three separate days of assessments across 10 fitness domains before and after participating in the program for six months. For each sex, 2 (Time) × 2 (Group) RANOVA were used for each fitness test. For women, significant Time effects were found for four fitness domains (i.e., flexibility, power, muscular endurance, and strength), and a Group × Time interaction for cardiorespiratory endurance, with the 0–6-month group improving more. For men, significant Time effects were found for flexibility, muscular endurance, and strength. These data provide evidence for multiple fitness improvements after six months of CrossFit participation with greater 1.5 mile run time improvement among women with less experience.
Heart rate variability (HRV) may be useful for prescribing high-intensity functional training (HIFT) exercise programs. This study aimed to compare effects of HRV-guided and predetermined HIFT on cardiovascular function, body composition, and performance. Methods: Recreationally-active adults (n = 55) were randomly assigned to predetermined HIFT (n = 29, age = 24.1 ± 4.1 years) or HRV-guided HIFT (n = 26, age = 23.7 ± 4.5) groups. Both groups completed 11 weeks of daily HRV recordings, 6 weeks of HIFT (5 d·week-1), and pre- and post-test body composition and fitness assessments. Meaningful changes in resting HRV were used to modulate (i.e., reduce) HRV-guided participants’ exercise intensity. Linear mixed models were used with Bonferroni post hoc adjustment for analysis. Results: All participants significantly improved resting heart rate, lean mass, fat mass, strength, and work capacity. However, no significant between-groups differences were observed for cardiovascular function, body composition, or fitness changes. The HRV-guided group spent significantly fewer training days at high intensity (mean difference = −13.56 ± 0.83 days; p < 0.001). Conclusion: HRV-guided HIFT produced similar improvements in cardiovascular function, body composition, and fitness as predetermined HIFT, despite fewer days at high intensity. HRV shows promise for prescribing individualized exercise intensity during HIFT.
Background and Purpose: Healthy aging allows older adults to remain active in their communities; however, sedentary behaviors can lead to physical deconditioning and decreased physical function. Structured exercise programs are recommended to facilitate activity engagement and prevent muscle atrophy due to aging to facilitate older adults' abilities to complete activities of daily living. In particular, high-intensity functional training (HIFT) is a multicomponent group exercise program that has previously been shown to increase physical function for middle-age cancer survivors. This study examined the preliminary feasibility and effectiveness of HIFT for improving physical function and participation in physical activity for community-dwelling older adults. Methods: The 8-week pilot study included two 60-minute HIFT sessions per week. Participants (n = 8) were 75% female with a mean age of 71 (6) years. Study initiation, adherence, and acceptability were assessed to determine feasibility. Effectiveness was assessed via 5 physical function measures conducted during sessions 1 and 16 and included the Timed Up and Go, lift and carry test, chair stand test, a repeated stair climb test, and the 6-minute walk test. Participants also self-reported confidence and difficulty for activities of daily living via the Outpatient Physical Therapy Improvement in Movement Assessment Log and physical activity participation via the Community Health Activities Model Program for Seniors questionnaire. Results and Discussion: The study recruitment rate was 88.9% and 87.5% of participants adhered. Intervention acceptability was promising, as 4 participants reported liking multiple aspects of the intervention (eg, coaching/supervision and similar age peers). Intervention effectiveness was promising with significant improvement in 1 of 5 physical function measures, although clinical effects were most likely trivial. Participants reported increased participation in both leisure and structured physical activities. Conclusions: HIFT appeared feasible and showed promise for counteracting the loss of physical function and sedentary behaviors associated with aging. Results should be confirmed in a longer, fully powered study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.