In young adults, performance on a test of response inhibition was recently found to be correlated with performance on a reactive balance test where automated stepping responses must occasionally be inhibited. The present study aimed to determine whether this relationship holds true in older adults, wherein response inhibition is typically deficient and the control of postural equilibrium presents a greater challenge. Ten participants (50+ years of age) completed a seated cognitive test (stop signal task) followed by a reactive balance test. Reactive balance was assessed using a modified lean-and-release system where participants were required to step to regain balance following perturbation, or suppress a step if an obstacle was present. The stop signal task is a standardized cognitive test that provides a measure of the speed of response inhibition called the Stop Signal Reaction Time (SSRT). Muscle responses in the legs were compared between conditions where a step was allowed or blocked to quantify response inhibition of the step. The SSRT was significantly related to leg muscle suppression during balance recovery in the stance leg. Thus, participants that were better at inhibiting their responses in the stop signal task were also better at inhibiting an unwanted leg response in favor of grasping a supportive handle. The relationship between a seated cognitive test using finger responses and leg muscle suppression when a step was blocked indicates a context-independent, generalized capacity for response inhibition. This suggests that a simple cognitive test such as the stop signal task could be used clinically to predict an individual’s capacity for adapting balance reactions and fall risk. The present results provide support for future studies, with larger samples, to verify this relationship between stop signal reaction time and leg response during balance recovery.
Background Submaximal endurance exercise has been shown to cause elevated gastrointestinal permeability, injury, and inflammation, which may negatively impact athletic performance and recovery. Preclinical and some clinical studies suggest that flavonoids, a class of plant secondary metabolites, may regulate intestinal permeability and reduce chronic low-grade inflammation. Consequently, the purpose of this study was to determine the effects of supplemental flavonoid intake on intestinal health and cycling performance. Materials and methods A randomized, double-blind, placebo-controlled crossover trial was conducted with 12 cyclists (8 males and 4 females). Subjects consumed a dairy milk-based, high or low flavonoid (490 or 5 mg) pre-workout beverage daily for 15 days. At the end of each intervention, a submaximal cycling trial (45 min, 70% VO2max) was conducted in a controlled laboratory setting (23°C), followed by a 15-minute maximal effort time trial during which total work and distance were determined. Plasma samples were collected pre- and post-exercise (0h, 1h, and 4h post-exercise). The primary outcome was intestinal injury, assessed by within-subject comparison of plasma intestinal fatty acid-binding protein. Prior to study start, this trial was registered at ClinicalTrials.gov (NCT03427879). Results A significant time effect was observed for intestinal fatty acid binding protein and circulating cytokines (IL-6, IL-10, TNF-α). No differences were observed between the low and high flavonoid treatment for intestinal permeability or injury. The flavonoid treatment tended to increase cycling work output (p = 0.051), though no differences were observed for cadence or total distance. Discussion Sub-chronic supplementation with blueberry, cocoa, and green tea in a dairy-based pre-workout beverage did not alleviate exercise-induced intestinal injury during submaximal cycling, as compared to the control beverage (dairy-milk based with low flavonoid content).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.