Fischer-344 rats treated with 12,500 ppm (728 and 879 mg/kg/d for male and females, respectively) and B6C3F1 mice treated with 6,000 ppm (1,227 and 1,408 mg/kg/d, respectively) di(2-ethylhexyl)phthalate (DEHP) in the diet for 78 weeks were allowed to recover for an additional 26 weeks on control diet. Blood was analyzed at weeks 78 and 104 from 10 animals per sex per group; animals were sacrificed at weeks 79 and 105 for histopathologic examination. The results are compared with data from animals continuously exposed to these dietary levels for 104 weeks (10, 11). Body weights and food consumption were measured monthly. BUN, albumin, and globulin that were significantly different for rats exposed to DEHP throughout 104 weeks, were comparable to controls for the recovery group. Reversibility of chronic effects on erythrocyte count, hemoglobin, and hematocrit values was apparent only for female rats. Chronic exposure demonstrated effects on liver, kidney, and testes weights. All organ weight effects except for testes for the Recovery group of rats, and all organ weight effects for mice, were reversible. Pigmentation of Kupffer cells and renal tubules present in chronically treated rats were not observed for the Recovery group. Lesions in the testes and pituitary gland were not reversible in rats. This may be a reflection of the senescence of the hypothalamic-gonad axis in rats. Cessation of exposure for mice resulted in amelioration of effects in the kidneys, liver, and testes. The extent of reversibility suggests that many chronic effects may be associated with a metabolic phenomenon such as peroxisome proliferation, which also reverted to control levels after 26 weeks of recovery.
1. Excretion balance studies were conducted with 2-ethylhexanol (2-EH) in female Fischer 344 rats following single high (500 mg/kg) and low (50 mg/kg) oral doses of [14C]2-EH, following repeated oral dosing with unlabelled 2-EH at the low level, following dermal exposure for 6 h with a 1 g/kg applied dose of [14C]2-EH, and following a 1 mg/kg i.v. dose of [14C]2-EH. 2. The high, low and repeated low oral dose studies with 2-EH showed similar excretion balance profiles of [14C], with some evidence of metabolic saturation at the high dose. 3. No evidence of metabolic induction was seen following the repeated low oral dosing. 4. All of the oral doses were eliminated rapidly, predominantly in the urine during the first 24 h following dosing. 5. The dermal dosing resulted in only about 5% absorption of the 1 g/kg dose, with the major portion of the dose recovered unabsorbed from the dermal exposure cell at 6 h. 6. Urinary metabolites eliminated following the oral and dermal doses were predominantly glucuronides of oxidized metabolites of 2-EH, including glucuronides of 2-ethyladipic acid, 2-ethylhexanoic acid, 5-hydroxy-2-ethylhexanoic acid and 6-hydroxy-2-ethylhexanoic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.