We study self-affine tilings of R n with special emphasis on the two-digit case. We prove that in this case the tile is connected and, if n 3, is a lattice-tile.
We consider the problem of constructing stable maps from surfaces to the plane with branch set a given set of curves immersed (except possibly with cusps) in the plane. Various constructions are used (1) piecing together regions immersed in the plane (2) modifying an existing stable map by a sequence of codimension one transitions (swallowtails etc) or by surgeries. In (1) the way the regions are pieced together is described by a bipartite graph (an edge C* corresponds to a branch curve C with the vertices of C* corresponding to the two regions containing C). We show that any bipartite graph may be realized by a stable map and we consider the question of realizing graphs by fold maps (i.e. maps without cusps). For example, using Arnol'd's classification of immersed curves, we list all branch sets with at most two branch curves and four double points realizable by planar fold maps of the torus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.