Several protein kinases from diverse eukaryotes known to perform important roles in DNA repair have also been shown to play critical roles in telomere maintenance. Here, we report that the human telomere-associated protein TRF2 is rapidly phosphorylated in response to DNA damage. We find that the phosphorylated form of TRF2 is not bound to telomeric DNA, as is the ground form of TRF2, and is rapidly localized to damage sites. Our results suggest that the ataxia-telangiectasia-mutated (ATM) protein kinase signal-transduction pathway is primarily responsible for the DNA damage-induced phosphorylation of TRF2. Unlike DNA damageinduced phosphorylation of other ATM targets, the phosphorylated form of TRF2 is transient, being detected rapidly at DNA damage sites postirradiation, but largely dissipated by 2 hours. In addition, we report that the phosphorylated form of TRF2 is present at telomeres in cell types undergoing telomere-based crisis and a recombination-driven, telomerase-independent, alternative lengthening of telomeres (ALT) pathway, likely as a consequence of a telomere-based DNA damage response. Our results link the induction of TRF2 phosphorylation to the DNA damage-response system, providing an example of direct cross-talk via a signaling pathway between these two major cellular processes essential for genomic stability, telomere maintenance, and DNA repair.
Two isoforms of proliferating cell nuclear antigen (PCNA) have been observed in breast cancer cells. Commercially available antibodies to PCNA recognize both isoforms and, therefore, cannot differentiate between the PCNA isoforms in malignant and nonmalignant breast epithelial cells and tissues. We have developed a unique antibody that specifically detects a PCNA isoform (caPCNA) associated with breast cancer epithelial cells grown in culture and breast-tumor tissues. Immunostaining studies using this antibody suggest that the caPCNA isoform may be useful as a marker of breast cancer and that the caPCNA-specific antibody could potentially serve as a highly effective detector of malignancy. We also report here that the caPCNA isoform functions in breast cancer-cell DNA replication and interacts with DNA polymerase ␦. Our studies indicate that the caPCNA isoform may be a previously uncharacterized detector of breast cancer. mass spectrometry ͉ pathology ͉ posttranslational modification ͉ DNA replication ͉ genome stability
Introduction-Solid tumors, such as neuroblastoma (NB), are associated with a heterogeneous cell environment. Multicellular tumor spheroid (MCTS) cultures have been shown to better mimic growth characteristics of in vivo solid tumors. Because tumor spheroid growth patterns may be quite different from standard two-dimensional culture systems, we sought to compare the protein expression profiles of two-and three-dimensional in vitro NB cultures, i.e., monolayers and MCTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.