2 Additive manufacturing (AM) offers significant potential benefits in the field of drug delivery and pharmaceutical/medical device manufacture. Of AM processes, 3D inkjet printing enables precise deposition of a formulation, whilst offering the potential for significant scale up or scale out as a manufacturing platform. This work hypothesizes that suitable solvent based ink formulations can be developed that allow the production of solid dosage forms that meet the standards required for pharmaceutical tablets, whilst offering a platform for flexible and personalised manufacture. We demonstrate this using piezo-activated inkjetting to 3D print ropinirole hydrochloride. The tablets produced consist of a cross-linked poly(ethylene glycol diacrylate) (PEGDA) hydrogel matrix containing the drug, photoinitiated in a low oxygen environment using an aqueous solution of Irgacure 2959. At a Ropinirole HCl loading of 0.41mg, drug release from the tablet is shown to be Fickian. Raman and IR spectroscopy indicate a high degree of cross-linking and formation of an amorphous solid dispersion. This is the first publication of a UV inkjet 3D printed tablet. Consequently, this work opens the possibility for the translation of scalable, high precision and bespoke ink-jet based additive manufacturing to the pharmaceutical sector.
An extrusion-based 3D printer was used to fabricate paracetamol tablets with different geometries (mesh, ring and solid) from a single paste-based formulation formed from standard pharmaceutical ingredients. The tablets demonstrate that tunable drug release profiles can be achieved from this single formulation even with high drug loading (> 80% w/w). The tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed well-defined release profiles (from immediate to sustained release) controlled by their different geometries. The dissolution results showed dependency of drug release on the surface area/volume (SA/V) ratio and the SA of the different tablets. The tablets with larger SA/V ratios and SA had faster drug release. The 3D printed tablets were also evaluated for physical and mechanical properties including tablet dimension, drug content, weight variation and breaking force and were within acceptable range as defined by the international standards stated in the US Pharmacopoeia. X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy were used to identify the physical form of the active and to assess possible drug-excipient interactions. These data again showed that the tablets meet USP requirement. These results clearly demonstrate the potential of 3D printing to create unique pharmaceutical manufacturing, and potentially clinical, opportunities. The ability to use a single unmodified formulation to achieve defined release profiles could allow, for example, relatively straightforward personalization of medicines for individuals with different metabolism rates for certain drugs and hence could offer significant development and clinical opportunities.
The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78 nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl4∙3H2O) is reported, where the gold salt concentration is adjustable on demand from zero to 20 wt%. For the first-time 7-Diethylamino-3-thenoylcoumarin (DETC) is used as the photoinitiator. Only 0.5 wt% of DETC was required to promote both polymerisation and photoreduction of up to 20 wt% of gold salt. This efficiency is the highest reported for Au-containing composite fabrication by two-photon lithography. Transmission Electron Microscopy (TEM) analysis confirmed the presence of small metallic nanoparticles (5.4 ± 1.4 nm for long axis / 3.7 ± 0.9 nm for short axis) embedded within the polymer matrix, whilst X-ray Photoelectron Spectroscopy (XPS) confirmed that they exist in the zero valent oxidation state. UV-vis spectroscopy defined that they exhibit the property of localised surface plasmon resonance (LSPR). The capability demonstrated in this study opens up new avenues for a range of applications, including plasmonics, metamaterials, flexible electronics and biosensors.
Synthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day of use, which means that infection is inevitable when resident for sufficient time. The O'Neill Review on antimicrobial resistance estimates that, left unchecked, ten million people will die annually from drug‐resistant infections by 2050. Development of biomaterials resistant to bacterial colonization can play an important role in reducing device‐associated infections. However, rational design of new biomaterials is hindered by the lack of quantitative structure–activity relationships (QSARs). Here, the development of a predictive QSAR is reported for bacterial biofilm formation on a range of polymers, using calculated molecular descriptors of monomer units to discover and exemplify novel, biofilm‐resistant (meth‐)acrylate‐based polymers. These predictions are validated successfully by the synthesis of new monomers which are polymerized to create coatings found to be resistant to biofilm formation by six different bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus.
Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a range of (meth)acrylate copolymers which contain monomers reported to deliver bacterial resistance to surfaces. This optimization allows such monomers to be employed within novel coatings to reduce bacterial attachment to silicone urinary catheters. We show that the flexibility of copolymers can be tuned to match that of the silicone catheter substrate, by copolymerizing these polymers with a lower Tg monomer such that it passes the flexing fatigue tests as coatings upon catheters, that the homopolymers failed. Furthermore, the Tg values of the copolymers are shown to be readily estimated by the Fox equation. The bacterial resistance performance of these copolymers were typically found to be better than the neat silicone or a commercial silver containing hydrogel surface, when the monomer feed contained only 25 v% of the "hit" monomer. The method of initiation (either photo or thermal) was shown not to affect the bacterial resistance of the copolymers. Optimized synthesis conditions to ensure that the correct copolymer composition and to prevent the onset of gelation are detailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.