Hydrogels are promising for a variety of medical applications due to their high water content and mechanical similarity to natural tissues. When made injectable, hydrogels can reduce the invasiveness of application, which in turn reduces surgical and recovery costs. Key schemes used to make hydrogels injectable include in situ formation due to physical and/or chemical cross-linking. Advances in polymer science have provided new injectable hydrogels for applications in drug delivery and tissue engineering. A number of these injectable hydrogel systems have reached the clinic and impact the health care of many patients. However, a significant remaining challenge is translating the ever-growing family of injectable hydrogels developed in laboratories around the world to the clinic. V C 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 2012
The invasion of malignant glioblastoma (GBM) cells into healthy brain is a primary cause of tumor recurrence and associated morbidity. Here, we describe a high-throughput method for quantitative measurement of GBM proliferation and invasion in three-dimensional (3D) culture. Optically clear hydrogels composed of thiolated hyaluronic acid and gelatin were chemically crosslinked with thiol-reactive poly(ethylene glycol) polymers to form an artificial 3D tumor microenvironment. Characterization of the viscoelasticity and aqueous stability indicated the hydrogels were mechanically tunable with stiffness ranging from 18 Pa to 18.2 kPa and were resistant to hydrolysis for at least 30 days. The proliferation, dissemination and subsequent invasion of U118 and U87R GBM spheroids cultured on the hydrogels were tracked in situ with repeated fluorescence confocal microscopy. Using custom automated image processing, cells were identified and quantified through 500 µm of gel over 14 days. Proliferative and invasive behaviors were observed to be contingent on cell type, gel stiffness, and hepatocyte growth factor availability. These measurements highlight the utility of this platform for performing quantitative, fluorescence imaging analysis of the behavior of malignant cells within an artificial, 3D tumor microenvironment.
Background The antimicrobial concentration required to kill all the bacteria in a biofilm, known as the minimum biofilm eradication concentration (MBEC), is typically determined in vitro by exposing the biofilm to serial concentrations of antimicrobials for 24 hours or less. Local delivery is expected to cause high local levels for longer than 24 hours. It is unknown if longer antimicrobial exposures require the same concentration to eradicate bacteria in biofilm. Questions/purposes Does MBEC change with increased antimicrobial exposure time? Methods Biofilms were grown for 24 hours using five pathogens (methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa) and then exposed to four antimicrobials regimens: tobramycin, vancomycin, and tobramycin combined with vancomycin in 3:1 and 1:1 ratios by weight in concentrations of 62.5, 125, 250, 500, 1000, 2000, 4000, and 8000 lg/mL for three durations, 1, 3, and 5 days, in triplicate. MBEC was measured as the lowest concentration that killed all bacteria in the biofilm determined by 21-day subculture. Results MBEC was lower when antimicrobial exposure time was longer. For the staphylococcus species, the MBEC was lower when exposure time was 5 days than 1 day in 11 of 12 antimicrobial/microorganism pairs. The MBEC range for these 11 pairs on Day 1 was 4000 to[8000 lg/mL and on Day 5 was \ 250 to 8000 lg/mL. MBEC for tobramycin/P. aeruginosa was 2000 lg/mL on Day 1 and B 250 lg/mL on Day 5, and for E. coli, 125 lg/mL on Day 1 and B 62.5 on Day 5. Conclusions Although antimicrobial susceptibility was lower for longer exposure times in the microorganisms we studied, confirmation is required for other pathogens. Clinical Relevance One-day MBEC assays may overestimate the local antimicrobial levels needed to kill organisms in biofilm if local levels are sustained at MBEC or above for longer than 24 hours. Future studies are needed to confirm that antimicrobial levels achieved clinically from local delivery are above the MBEC at relevant time points and to confirm that MBEC for in vitro microorganisms accurately represents MBEC of in vivo organisms in an clinical infection.
Background Local delivery can achieve the high antimicrobial concentrations necessary to kill biofilm-related microbes. Degradation times for resorbable carriers are too long. Hydrogels (gels of hydrophilic polymer in water) can degrade faster but release antimicrobials too quickly. We previously developed hydrogels based on the copolymer poly(N-isopropylacrylamide-co-dimethyl-c-butyrolactone acrylate-co-Jeffamine 1 M-1000 acrylamide) (PNDJ) with delivery times of several days with complete degradation in less than 6 weeks. Questions/purposes We asked: (1) What is the elution profile of gentamicin from PNDJ hydrogels? (2) Is gentamicin released from gentamicin-loaded PNDJ (G-PNDJ) hydrogel effective for treatment of orthopaedic infection? (3) Does local gentamicin delivery from G-PNDJ hydrogel cause renal dysfunction? Methods (1) Two formulations of G-PNDJ, lower dose (1.61 wt%) and higher dose (3.14 wt%), five samples each, were eluted in buffered saline under infinite sink conditions. (2) Infections were induced in 16 New Zealand White rabbits by inserting a Kirschner wire in a devascularized radius segment and inoculating with 7.5 9 10 6 colony-forming units Staphylococcus aureus. At 3 weeks, débridement was performed and a new Kirschner wire was placed in the dead space. Treatment was randomized to higher-dose G-PNDJ or no hydrogel. No systemic antimicrobials were used. Positive culture and acute inflammation on histology were used to determine the presence of infection 4 weeks postdébridement. (3) 3.14 wt% G-PNDJ, 0.75, 1.5, or 3.0 mL, was injected subcutaneously in nine Sprague-Dawley rats, three of each dose. Serum gentamicin, blood urea nitrogen, and creatinine were measured on Days 1, 3, 7, 14, and 28. Results (1) Gentamicin release was sustained over 7 days with the higher-dose formulation release profile similar to release from high-dose antimicrobial-loaded bone cement.(2) Four weeks postdébridement, infection was present in eight of eight no-hydrogel rabbits but zero of eight rabbits treated with G-PNDJ hydrogel (p \ 0.001). (3) Blood urea nitrogen and creatinine were transiently elevated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.