The virulence levels attained by serial passage of pathogens through similar host genotypes are much higher than observed in natural systems; however, it is unknown what keeps natural virulence levels below these empirically demonstrated maximum levels. One hypothesis suggests that host diversity impedes pathogen virulence, because adaptation to one host genotype carries trade-offs in the ability to replicate and cause disease in other host genotypes. To test this hypothesis, with the simplest level of population diversity within the loci of the major histocompatibility complex (MHC), we serially passaged Friend virus complex (FVC) through two rounds, in hosts with either the same MHC genotypes (pure passage) or hosts with different MHC genotypes (alternated passage). Alternated passages showed a significant overall reduction in viral titre (31%) and virulence (54%) when compared to pure passages. Furthermore, a resistant host genotype initially dominated any effects due to MHC diversity; however, when FVC was allowed to adapt to the resistant host genotype, predicted MHC effects emerged; that is, alternated lines show reduced virulence. These data indicate serial exposure to diverse MHC genotypes is an impediment to pathogen adaptation, suggesting genetic variation at MHC loci is important for limiting virulence in a rapidly evolving pathogen and supports negative frequency-dependent selection as a force maintaining MHC diversity in host populations.
Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.