The purpose of this study was to develop a novel experimental system for the modulation and measurement of intracranial pressure (ICP), and to use this system to assess the impact of elevated ICP on the optic nerve and retinal ganglion cells (RGCs) in CD1 mice. This system involved surgical implantation of an infusion cannula and a radiowave based pressure monitoring probe through the skull and into the subarachnoid space. The infusion cannula was used to increase ICP, which was measured by the probe and transmitted to a nearby receiver. The system provided robust and consistent ICP waveforms, was well tolerated, and was stable over time. ICP was elevated to approximately 30 mmHg for one week, after which we assessed changes in optic nerve structure with transmission electron microscopy in cross section and RGC numbers with antibody staining in retinal flat mounts. ICP elevation resulted in optic nerve axonal loss and disorganization, as well as RGC soma loss. We conclude that the controlled manipulation of ICP in active, awake mice is possible, despite their small size. Furthermore, ICP elevation results in visual system phenotypes of optic nerve and RGC degeneration, suggesting that this model can be used to study the impact of ICP on the visual system. Potentially, this model can also be used to study the relationship between ICP and IOP, as well diseases impacted by ICP variation such as glaucoma, idiopathic intracranial hypertension, and the spaceflight-related visual impairment intracranial pressure syndrome.
Elevated intracranial pressure (ICP) can result in multiple neurologic sequelae including vision loss. Inducible models of ICP elevation are lacking in model organisms, which limits our understanding of the mechanism by which increased ICP impacts the visual system. We adapted a mouse model for the sustained elevation of ICP and tested the hypothesis that elevated ICP impacts the optic nerve and retinal ganglion cells (RGCs). ICP was elevated and maintained for 2 weeks, and resulted in multiple anatomic changes that are consistent with human disease including papilledema, loss of physiologic cupping, and engorgement of the optic nerve head. Elevated ICP caused a loss of RGC somas in the retina and RGC axons within the optic nerve, as well as a reduction in both RGC electrical function and contrast sensitivity. Elevated ICP also caused increased hypoxia-inducible factor (HIF)-1 alpha expression in the ganglion cell layer. These experiments confirm that sustained ICP elevation can be achieved in mice and causes phenotypes that preferentially impact RGCs and are similar to those seen in human disease. With this model, it is possible to model human diseases of elevated ICP such as Idiopathic Intracranial Hypertension and Spaceflight Associated Neuro-ocular Syndrome.
The purpose of this study was to assess the impact of prolonged intraocular pressure (IOP) elevation on retinal anatomy and function in a mouse model of experimental glaucoma. IOP was elevated by anterior chamber injection of a fixed combination of polystyrene beads and sodium hyaluronate, and maintained via re-injection after 24 weeks. IOP was measured weekly with a rebound tonometer for 48 weeks. Histology was assessed with a combination of retrograde labeling and antibody staining. Retinal physiology and function was assessed with dark-adapted electroretinograms (ERGs). Comparisons between bead-injected animals and various controls were conducted at both 24 and 48 weeks after bead injection. IOP was elevated throughout the study. IOP elevation resulted in a reduction of retinal ganglion cell (RGCs) and an increase in axial length at both 24 and 48 weeks after bead injection. The b-wave amplitude of the ERG was increased to the same degree in bead-injected eyes at both time points, similar to previous studies. The positive scotopic threshold response (pSTR) amplitude, a measure of RGC electrical function, was diminished at both 24 and 48 weeks when normalized to the increased b-wave amplitude. At 48 weeks, the pSTR amplitude was reduced even without normalization, suggesting more profound RGC dysfunction. We conclude that injection of polystyrene beads and sodium hyaluronate causes chronic IOP elevation which results in phenotypes of stable b-wave amplitude increase and progressive pSTR amplitude reduction, as well as RGC loss and axial length elongation.
Elevated ICP from cephalic venous engorgement leads to an increase in the LLA. These findings suggest that pathologic processes resulting in cephalic venous outflow obstruction and intracranial venous congestion can acutely elevate ICP and may place the brain at risk for impaired cerebrovascular autoregulation.
Hypercarbia without acidosis increases the observed LLA independent of alterations in ICP. Elevations in CO2 can impair cerebrovascular autoregulation, but if there is a sufficient increase in blood pressure above the CO2 altered LLA, then autoregulation persists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.